【題目】如圖,已知∠MON=30°,點A1,A2,A3,…在射線ON上,點B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為 .
【答案】2n﹣1
【解析】
試題分析:根據等腰三角形的性質以及平行線的性質得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…進而得出答案.
解:∵△A1B1A2是等邊三角形,
∴A1B1=A2B1,
∵∠MON=30°,
∵OA2=4,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32,
以此類推△AnBnAn+1的邊長為 2n﹣1.
故答案為:2n﹣1.
科目:初中數學 來源: 題型:
【題目】給出下列判斷:①在數軸上,原點兩旁的兩個點所表示的數都是互為相反數;②任何正數必定大于它的倒數;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升冪排列的多項式,其中判斷正確的是( )
A.①② B.②③ C.③④ D.①④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x+2與x軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是x=﹣且經過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩輛汽車同時分別從A、B兩城沿同一條高速公路勻速駛向C城.已知A、C兩城的距離為360km,B、C兩城的距離為320km,甲車比乙車的速度快10km/h,結果兩輛車同時到達C城.設乙車的速度為xkm/h.
(1)根據題意填寫下表:
行駛的路程(km) | 速度(km/h) | 所需時間(h) | |
甲車 | 360 |
|
|
乙車 | 320 | x |
|
(2)求甲、乙兩車的速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(a,1)與點A′(5,b)關于坐標原點對稱,則實數a、b的值是( )
A.a=5,b=1 B.a=-5,b=1
C.a=5,b=-1 D.a=-5,b=-1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍。乒乓球拍每副定價30元,乒乓球每盒定價5元,經洽談后,甲店每買一副球拍贈一盒乒乓球,乙店全部按定價的9折優(yōu)惠。該班需球拍5副,乒乓球若干盒(不小于5盒)。
問:(1)設購買乒乓球x盒時,在甲家購買所需多少元?在乙家購買所需多少元?(用含x的代數式表示,并化簡)(4分)
(2)當購買乒乓球多少盒時,兩種優(yōu)惠辦法付款一樣?(2分)
(3)當購買30盒乒乓球時,若讓你選擇一家商店去辦這件事,你打算去哪家商店購買?為什么?(4分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:直線AB與直線CD相交于點O,∠BOC=45°,
(1)如圖1,若EO⊥AB,求∠DOE的度數;
(2)如圖2,若EO平分∠AOC,求∠DOE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個等腰三角形一邊長為4cm,另一邊長為5cm,那么這個等腰三角形的周長是( )
A.13cm B.14cm C.13cm或14cm D.以上都不對
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com