【題目】如圖,直線相交于點(diǎn),的平分線,,

1)若,請(qǐng)求出的度數(shù);

2平分嗎?為什么?

【答案】(1)155°;(2)OP平分∠EOF理由見解析

【解析】

(1)根據(jù)對(duì)頂角相等、角平分線的性質(zhì)求得∠BOPAOD=25°;然后由鄰補(bǔ)角的定義推知∠DOP=180°﹣∠COP;

(2)根據(jù)垂直的定義、角平分線的定義求得∠EOP=∠FOP

(1)∵直線ABCD相交于點(diǎn)O,∴∠BOC=∠AOD=50°.

OPBOC的平分線,∴∠COP=BOC=×50°=25°,∴∠DOP=∠COD-∠COP=180°-25°=155°;

(2)OP平分EOF理由如下

OEABOFCD,∴∠EOB=∠COF=90°.

OPBOC的平分線,∴∠POC=∠POB,∴∠EOB-∠POB=∠COF-∠POC,EOP=∠FOP,∴OP平分EOF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場(chǎng)將一批學(xué)生書包按成本價(jià)提高50%后標(biāo)價(jià),又按標(biāo)價(jià)的80%優(yōu)惠賣出,每個(gè)的售價(jià)是72元.每個(gè)這種書包的成本價(jià)是多少元?利潤(rùn)是多少元?利潤(rùn)率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一公路AB和一鐵路CD在點(diǎn)A處交匯,且BAD=30°,在公路的點(diǎn)P處有一所學(xué)校(學(xué)?醋鼽c(diǎn)P,點(diǎn)P與公路AB的距離忽略不計(jì)),AP=320米,火車行駛時(shí),火車周圍200米以內(nèi)會(huì)受到噪音的影響,現(xiàn)有一列動(dòng)車在鐵路CD上沿AD方向行駛,該動(dòng)車車身長(zhǎng)200米,動(dòng)車的速度為180千米/時(shí),那么在該動(dòng)車行駛過程中.

1)學(xué)校P是否會(huì)受到噪聲的影響?說明理由;

2)如果受噪聲影響,那么學(xué)校P受影響的時(shí)間為多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,2條直線相交有1個(gè)交點(diǎn),3條直線相交最多有3個(gè)交點(diǎn),4條直線相交最多有6個(gè)交點(diǎn)…按這樣的規(guī)律若n條直線相交交點(diǎn)最多有28個(gè),則此時(shí)n的值為( 。

A. 18 B. 10 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一根起點(diǎn)為1的數(shù)軸,現(xiàn)有同學(xué)將它彎折,彎折后虛線上第一行的數(shù)是1,第二行的數(shù)是13,第三行的數(shù)是43,…,依此規(guī)律,第五行的數(shù)是( )

A. 183 B. 157 C. 133 D. 91

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90OAB=AC,直線MN經(jīng)過點(diǎn)A,BDMN于點(diǎn)D,CEMN于點(diǎn)E.

(1)試判斷線段DE、BD、CE之間的數(shù)量關(guān)系,并說明理由;

(2)當(dāng)直線MN運(yùn)動(dòng)到如圖2所示位置時(shí),其余條件不變,判斷線段DEBD、CE之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個(gè)結(jié)論: ①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實(shí)數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個(gè)數(shù)是(

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,AB∥CDOE平分∠BOC,OF⊥OEOP⊥CD,∠ABO,則下列結(jié)論: ①∠BOE180-a°;②OF平分∠BOD;③∠POE∠BOF;④∠POB2∠DOF.其中正確的個(gè)數(shù)有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】?jī)蓧K等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn).

(1)如圖1,若點(diǎn)D、E分別在AC、BC的延長(zhǎng)線上,通過觀察和測(cè)量,猜想FH和FG的數(shù)量關(guān)系為和位置關(guān)系為;
(2)如圖2,若將三角板△DEC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)至ACE在一條直線上時(shí),其余條件均不變,則(1)中的猜想是否還成立,若成立,請(qǐng)證明,不成立請(qǐng)說明理由;
(3)如圖3,將圖1中的△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案