在平面直角坐標(biāo)系xOy中,A、B為反比例函數(shù)(x>0)的圖象上兩點,A點的橫坐標(biāo)與B點的縱坐標(biāo)均為1,將(x>0)的圖象繞原點O順時針旋轉(zhuǎn)90°,A點的對應(yīng)點為A′,B點的對應(yīng)點為B′.
(1)求旋轉(zhuǎn)后的圖象解析式;
(2)求A′、B′點的坐標(biāo);
(3)連接AB′、動點M從A點出發(fā)沿線段AB'以每秒1個單位長度的速度向終點B′運(yùn)動;動點N同時從B′點出發(fā)沿線段B′A′以每秒1個單位長度的速度向終點A′運(yùn)動,當(dāng)其中一個點停止運(yùn)動時另一個點也隨之停止運(yùn)動.設(shè)運(yùn)動的時間為t秒,試探究:是否存在使△MNB'為等腰直角三角形的t值,若存在,求出t的值;若不存在,說明理由.

【答案】分析:(1)首先把x=1代入反比例函數(shù)(x>0)的解析式,求出對應(yīng)的y值,得到A點坐標(biāo),然后由旋轉(zhuǎn)的性質(zhì)得出∠AOA′=90°,OA=OA′,如果分別過A、A′作AM⊥y軸于M,A′N⊥x軸于N,連接OA,OA′,易證△OAM≌△OA′N,得到A′的坐標(biāo),從而求出旋轉(zhuǎn)后的圖象解析式;
(2)上問已經(jīng)求出A′的坐標(biāo),同樣求出點B′的坐標(biāo);
(3)首先運(yùn)用待定系數(shù)法求出直線A′B′的解析式,由斜率k的值可知∠A′B′A=45°.然后假設(shè)存在使△MNB'為等腰直角三角形的t值,那么分兩種情況討論:①∠B′NM=90°;②∠B′MN=90°.針對每一種情況,都可以利用等腰直角三角形中斜邊是直角邊的倍列出方程,從而求出結(jié)果.
解答:解:(1)∵A為反比例函數(shù)(x>0)的圖象上的點,A點的橫坐標(biāo)為1,
∴A點坐標(biāo)為(1,4).
分別過A、A′作AM⊥y軸于M,A′N⊥x軸于N,連接OA,OA′.
∵將(x>0)的圖象繞原點O順時針旋轉(zhuǎn)90°,A點的對應(yīng)點為A',
∴∠AOA′=90°,OA=OA′.
在△OAM與△OA′N中,∠AOM=∠A′ON=90°-∠AON,∠AMO=∠A′NO=90°,OA=OA′,
∴△OAM≌△OA′N,
∴OM=ON=4,AM=A′N=1,
∴A′的坐標(biāo)為(4,-1),
∴旋轉(zhuǎn)后的圖象解析式為y=-;

(2)∵B為反比例函數(shù)(x>0)的圖象上兩點,B點的縱坐標(biāo)為1,
∴B(4,1),
又∵將(x>0)的圖象繞原點O順時針旋轉(zhuǎn)90°,A點的對應(yīng)點為A',B點的對應(yīng)點為B',
上問求出A點坐標(biāo)(1,4)的對應(yīng)點A′的坐標(biāo)為(4,-1),
同理求出B點坐標(biāo)(4,1)的對應(yīng)點B′的坐標(biāo)為(1,-4);

(3)設(shè)直線A′B′的解析式為y=kx+b,
則4k+b=-1,k+b=-4,
解得k=1,b=-5,
∴y=x-5,
∴∠A′B′A=45°.
如果△MNB'為等腰直角三角形,那么分兩種情況:①∠B′NM=90°;②∠B′MN=90°.
∵AM=B′N=t,∴B′M=AB′-AM=8-t.
①當(dāng)∠B′NM=90°時,B′M=B′N,
∴8-t=t,解得t=8-8;
②當(dāng)∠B′MN=90°時,B′N=B′M,
∴t=(8-t),解得t=16-8
∵A′B′==3,AB′=8,
∴0≤t≤3
又∵16-8>3,
∴t=16-8舍去.
故當(dāng)t=8-8時,△MNB'為等腰直角三角形.
點評:此題綜合考查了反比例函數(shù)、等腰直角三角形、旋轉(zhuǎn)的性質(zhì)等多個知識點.要注意(3)首先需根據(jù)已知條件確定哪些角可能是直角,要考慮到所有的情況,不要漏解.此題難度稍大,綜合性比較強(qiáng),注意對各個知識點的靈活應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點A(2,-2),在y軸上確定點P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點.
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C 點,D是線段BC上一點(不與點B、C重合),若以B、O、D為頂點的三角形與△BAC相似,求點D的坐標(biāo);
(3)點P在y軸上,點M在此拋物線上,若要使以點P、M、A、B為頂點的四邊形是平行四邊形,請你直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點B的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH.則在點E的運(yùn)動過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點M,使△MBC中BC邊上的高為7
2
?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點P,使△AOP與△AOB相似,則符合條件的點P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案