【題目】東坡商貿(mào)公司購進(jìn)某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式為:
,且其日銷售量y(kg)與時(shí)間t(天)的關(guān)系如下表:
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實(shí)際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準(zhǔn)扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時(shí)間t的增大而增大,求n的取值范圍.
【答案】(1)y=120-2t,60;(2)在第10天的銷售利潤最大,最大利潤為1250元;(3)7≤n<9.
【解析】
試題分析:(1)根據(jù)日銷售量y(kg)與時(shí)間t(天)的關(guān)系表,設(shè)y=kt+b,將表中對應(yīng)數(shù)值代入即可求出k,b,從而求出一次函數(shù)關(guān)系式,再將t=30代入所求的一次函數(shù)關(guān)系式中,即可求出第30天的日銷售量.
(2)日銷售利潤=日銷售量×(銷售單價(jià)-成本);分1≤t≤24和25≤t≤48兩種情況,按照題目中所給出的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式分別得出銷售利潤的關(guān)系式,再運(yùn)用二次函數(shù)的圖像及性質(zhì)即可得出結(jié)果.
(3)根據(jù)題意列出日銷售利潤W=(t+30-20-n)(120-2t)= -t2+2(n+5)t+1200-n,此二次函數(shù)的對稱軸為y=2n+10,要使W隨t的增大而增大,2n+10≥24,即可得出n的取值范圍.
試題解析:(1)依題意,設(shè)y=kt+b,將(10,100),(20,80)代入y=kt+b,得:,解得: ,∴日銷售量y(kg)與時(shí)間t(天)的關(guān)系 y=120-2t.當(dāng)t=30時(shí),y=120-60=60.
答:在第30天的日銷售量為60千克.
(2)設(shè)日銷售利潤為W元,則W=(p-20)y.
當(dāng)1≤t≤24時(shí),W=(t+30-20)(120-t)= =
當(dāng)t=10時(shí),W最大=1250.
當(dāng)25≤t≤48時(shí),W=(-t+48-20)(120-2t)= =
由二次函數(shù)的圖像及性質(zhì)知:當(dāng)t=25時(shí),W最大=1085.
∵1250>1085,∴在第10天的銷售利潤最大,最大利潤為1250元.
(3)依題意,得:W=(t+30-20-n)(120-2t)= ,其對稱軸為y=2n+10,要使W隨t的增大而增大,由二次函數(shù)的圖像及性質(zhì)知:2n+10≥24,解得n≥7.
又∵n<0,∴7≤n<9.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知2是關(guān)于x的方程x2﹣2mx+3m=0的一個(gè)根,并且這個(gè)方程的兩個(gè)根恰好是等腰三角形的兩條邊長,求此等腰三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把這個(gè)圖形稱為“8字型”.
根據(jù)三角形內(nèi)角和容易得到:∠A+∠D=∠C+∠B.
⑴利用“8字型”
如圖(1):∠A+∠B+∠C+∠D+∠E+∠F=_________.
⑵構(gòu)造“8字型”
如圖(2):∠A+∠B+∠C+∠D+∠E+∠F+∠G=_________.
⑶發(fā)現(xiàn)“8字型”
如圖(3):BE、CD相交于點(diǎn)A,CF為∠BCD的平分線,EF為∠BED的平分線.
①圖中共有________個(gè)“8字型”;
②若∠B:∠D:∠F=4:6:x,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是一個(gè)菱形綠地,其周長為40 m,∠ABC=120°,在其內(nèi)部有一個(gè)四邊形花壇EFGH,其四個(gè)頂點(diǎn)恰好在菱形ABCD各邊的中點(diǎn),現(xiàn)在準(zhǔn)備在花壇中種植茉莉花,其單價(jià)為10元/m2,請問需投資金多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果(x2+px+q)(x2-5x+7)的展開式中不含x2與x3項(xiàng),那么p與q的值是( )
A. p=5,q=18 B. p=-5,q=18
C. p=-5,q=-18 D. p=5,q=-18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是 -------------------------------------------------------------------------------- ( 。
A. 33=9 B. (a﹣b)2=a2﹣b2 C. (a3)4=a12 D. a2a3=a6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com