【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AE的長.

【答案】
(1)

證明:∵四邊形ABCD是平行四邊形,

∴DC∥AB,

∴∠OBE=∠ODF.

在△OBE與△ODF中,

∴△OBE≌△ODF(AAS).

∴BO=DO.


(2)

解:∵EF⊥AB,AB∥DC,

∴∠GEA=∠GFD=90°.

∵∠A=45°,

∴∠G=∠A=45°.

∴AE=GE

∵BD⊥AD,

∴∠ADB=∠GDO=90°.

∴∠GOD=∠G=45°.

∴DG=DO,

∴OF=FG=1,

由(1)可知,OE=OF=1,

∴GE=OE+OF+FG=3,

∴AE=3.


【解析】1)由平行四邊形的性質(zhì)和AAS證明△OBE≌△ODF,得出對應(yīng)邊相等即可;(2)證出AE=GE,再證明DG=DO,得出OF=FG=1,即可得出結(jié)果.
【考點精析】掌握平行四邊形的性質(zhì)是解答本題的根本,需要知道平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示為一張長為m,寬為nm<n)的小長方形紙片,現(xiàn)將8張該紙片按如圖2所示的方式無縫隙不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示,設(shè)左上角與右下角的陰影部分面積差為S,當BC長度變化時,按照同樣的方式放置,S卻始終保持不變,則此時=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象經(jīng)過A(2,1),B(1,3)兩點,并且交x軸于點C,交y軸于點D.

1)求該一次函數(shù)的解析式;

2)求點C和點D的坐標;

3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+m(m>0)x軸交于點A(-2,0),直線y=-x+n(n>0)x軸、y軸分別交于B、C兩點,并與直線y=2x+m(m>0)相交于點D,若AB=4

1)求點D的坐標;

2)求出四邊形AOCD的面積;

3)若Ex軸上一點,且ACE為等腰三角形,直接寫出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2 , 求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】食品安全是老百姓關(guān)注的話題,在食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存和運輸.某飲料加工廠生產(chǎn)的A、B兩種飲料均需加入同種添加劑,A飲料每瓶需加該添加劑2克,B飲料每瓶需加該添加劑3克,已知270克該添加劑恰好生產(chǎn)了AB兩種飲料共100瓶,問A、B兩種飲料各生產(chǎn)了多少瓶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1,0,1,2,3這五個數(shù)中任取兩數(shù)m,n,則二次函數(shù)y=﹣(x+m)2﹣n的頂點在x軸上的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).

(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;
(3)若雙曲線上點C(2,n)沿OA方向平移 個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A第,到達A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

(1)A、B兩地之間的距離: km;

(2)甲的速度為 km/h;乙的速度為30km/h;

(3)點M的坐標為 ;

(4)求:甲離B地的距離y(km)與行駛時間x(h)之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍).

查看答案和解析>>

同步練習(xí)冊答案