【題目】如圖,ABC沿直線(xiàn)l向右移了3厘米,得FDE,且BC6厘米,∠B40°.

(1)BE

(2)求∠FDB的度數(shù);

(3)找出圖中相等的線(xiàn)段(不另添加線(xiàn)段);

(4)找出圖中互相平行的線(xiàn)段(不另添加線(xiàn)段)

【答案】 (1) 9厘米;(2) 140°;(3) ABFDACFE、BCDEBDCE;(4) ABFDACFE.

【解析】試題分析:(1)根據(jù)平移的性質(zhì)可得CE=3cm,然后根據(jù)BEBCCE即可得出結(jié)論;

2)根據(jù)平移的性質(zhì)得出∠FDE的度數(shù),然后根據(jù)鄰補(bǔ)角互補(bǔ)即可得出答案;

(3)直接根據(jù)平移的性質(zhì)即可得出結(jié)論;

(4)根據(jù)平移的性質(zhì)即可得出結(jié)論.

試題解析:

解:1∵△ABC沿直線(xiàn)l向右移了3厘米,∴CEBD3cm,BEBCCE639厘米; 

2∵∠FDEB40°,∴∠FDB140°;

3相等的線(xiàn)段有:ABFD、ACFE、BCDEBDCE; 

4平行的線(xiàn)段有:ABFD、ACFE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在電線(xiàn)桿CD上的C處引拉線(xiàn)CE、CF固定電線(xiàn)桿,拉線(xiàn)CE和地面所成的角∠CED=60°,在離電線(xiàn)桿6米的B處安置高為1.5米的測(cè)角儀AB,在A處測(cè)得電線(xiàn)桿上C處的仰角為30°,求拉線(xiàn)CE的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位,參考數(shù)據(jù): ≈1.41, ≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】感知:如圖1,在ABC中,∠ABC=42°,ACB=72°,點(diǎn)DAB上一點(diǎn),EAC上一點(diǎn),BE、CD相交于點(diǎn)F.

(1)若∠ACD=35°,ABE=20°,求∠BFC的度數(shù);

(2)若CD平分∠ACB,BE平分∠ABC,求∠BFC的度數(shù);

探究:如圖2,在ABC中,BE平分∠ABC,CD平分∠ACB,寫(xiě)出∠BFC與∠A之間的數(shù)量關(guān)系,并說(shuō)明理由;

應(yīng)用:如圖3,在ABC中,BD平分∠ABC ,CD平分外角∠ACE請(qǐng)直接寫(xiě)出∠BDC與∠A之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京奧運(yùn)會(huì)體育場(chǎng)的鳥(niǎo)巢鋼結(jié)構(gòu)工程施工建設(shè)中,首次使用了我國(guó)科研人員自主研制的強(qiáng)度為4.6×108帕的鋼材,那么它的原數(shù)是(

A.4600000B.46000000C.460000000D.4600000000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A,點(diǎn)B在數(shù)軸上分別表示 6.5x.點(diǎn)B在點(diǎn)A的左邊,且點(diǎn)A,點(diǎn)B之間有9個(gè)整數(shù),則x的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雅安地震發(fā)生后,全國(guó)人民抗震救災(zāi),眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車(chē)型供選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車(chē)均滿(mǎn)載)

車(chē)型

汽車(chē)運(yùn)載量(噸/輛)

5

8

10

汽車(chē)運(yùn)費(fèi)(元/輛)

400

500

600

(1)全部物資可用甲型車(chē)8輛,乙型車(chē)5輛,丙型車(chē) 來(lái)運(yùn)送.

(2)若全部物資都用甲、乙兩種車(chē)型來(lái)運(yùn)送,需運(yùn)費(fèi)8200元,問(wèn)分別需甲、乙兩種車(chē)型各幾輛?

(3)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車(chē)型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車(chē)型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,王虎使一長(zhǎng)為4 cm,寬為3 cm的長(zhǎng)方形木板,在桌面上做無(wú)滑動(dòng)地翻滾(順時(shí)針?lè)较颍?木板上點(diǎn)A位置變化為AA1A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點(diǎn)A翻滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.

(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系________;

(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;

(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案