【題目】如圖在△ABC中,AB=AC=13,BC=10,D是AB的中點(diǎn),過點(diǎn)D作DE⊥AC于點(diǎn)E,
求:(1)△ABC的面積;
(2)DE的長(zhǎng)?
【答案】(1)60;(2).
【解析】
(1)過A作BC的垂線,由勾股定理易求得此垂線的長(zhǎng),即可求出△ABC的面積;
(2)連接CD,由于AD=BD,則△ADC、△BCD等底同高,它們的面積相等,由此可得到△ACD的面積;進(jìn)而可根據(jù)△ACD的面積求出DE的長(zhǎng).
解:(1)過A作AF⊥BC于F,
△ABC中,AB=AC=13,AF⊥BC,則BF=FC=BC=5;
Rt△ABF中,AB=13,BF=5;
由勾股定理,得AF=12;
∴S△ABC=BCAF=60;
(2)連接CD,
∵AD=BD,
∴S△ADC=S△BCD=S△ABC=30;
∵S△ADC=ACDE=30,
即DE==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O,若∠1=38°,則∠BDE的度數(shù)為( 。
A. 71° B. 76° C. 78° D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足為E,若線段AE=3,則四邊形ABCD的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 BF=CE,∠B=∠E,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△DEF的是( )
A. AB=DE B. AC∥DF C. ∠A=∠D D. AC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一個(gè)面積為150平方米的長(zhǎng)方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻(墻長(zhǎng)18米),另三邊用竹籬笆圍成,在與墻平行的一邊,開一扇2米寬的門.如果竹籬笆的長(zhǎng)為33米,求這個(gè)長(zhǎng)方形養(yǎng)雞場(chǎng)與墻垂直的邊長(zhǎng)是多少?與墻平行的邊長(zhǎng)是多少?(列方程解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是邊長(zhǎng)為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PM⊥CP交AB于點(diǎn)D,且PM=CP,過點(diǎn)M作MN∥AO,交BO于點(diǎn)N,連結(jié)ND、BM,設(shè)OP=t.
(1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線段MN的長(zhǎng)度是否隨點(diǎn)P的位置的變化而改變?并說明理由.
(3)當(dāng)t為何值時(shí),四邊形BNDM的面積最;
(4)在x軸正半軸上存在點(diǎn)Q,使得△QMN是等腰三角形,請(qǐng)直接寫出不少于4個(gè)符合條件的點(diǎn)Q的坐標(biāo)(用含t的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,我們?cè)?/span>“格點(diǎn)”直角坐標(biāo)系上可以看到,要求AB或CD的長(zhǎng)度,可以轉(zhuǎn)化為求Rt△ABC或Rt△DEF的斜邊長(zhǎng).
例如:從坐標(biāo)系中發(fā)現(xiàn):D(﹣7,3),E(4,﹣3),所以DF=|5﹣(﹣3)|=8,EF=|4﹣(﹣7)|=11,所以由勾股定理可得:DE=.
(1)在圖①中請(qǐng)用上面的方法求線段AB的長(zhǎng):AB= ;
(2)在圖②中:設(shè)A(x1,y1),B(x2,y2),試用x1,x2,y1,y2表示:AC= ,BC= ,AB= ;
(3)試用(2)中得出的結(jié)論解決如下題目:已知:A(2,1),B(4,3);
①直線AB與x軸交于點(diǎn)D,求線段BD的長(zhǎng);
②C為坐標(biāo)軸上的點(diǎn),且使得△ABC是以AB為邊的等腰三角形,請(qǐng)求出C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對(duì)應(yīng)點(diǎn),不寫畫法);
(2)直接寫出A′,B′,C′三點(diǎn)的坐標(biāo):A′( ),B′( ),C′( )
(3)計(jì)算△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com