【題目】我市某工藝廠為迎“五一”,設(shè)計(jì)了一款成本為20元/件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過(guò)調(diào)查,得到如下數(shù)據(jù):
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過(guò)45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?
【答案】(1)y與x的函數(shù)關(guān)系是一次函數(shù)的關(guān)系,函數(shù)關(guān)系式為y=-10x+800 (20<x<80);(2)當(dāng)銷售單價(jià)定為50元時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是9000 元;(3當(dāng)銷售單價(jià)定為45元時(shí),每天獲得的利潤(rùn)最大.
【解析】試題分析:(1)描點(diǎn),由圖可猜想y與x是一次函數(shù)關(guān)系,任選兩點(diǎn)求表達(dá)式,再驗(yàn)證猜想的正確性;
(2)利潤(rùn)=銷售總價(jià)-成本總價(jià)=單件利潤(rùn)×銷售量.據(jù)此得表達(dá)式,運(yùn)用性質(zhì)求最值;
(3)根據(jù)自變量的取值范圍結(jié)合函數(shù)圖象解答.
試題解析:(1)畫(huà)圖如圖,
由圖可猜想y與x是一次函數(shù)關(guān)系,
設(shè)這個(gè)一次函數(shù)為y=kx+b(k≠0)
∵這個(gè)一次函數(shù)的圖象經(jīng)過(guò)(30,500)
(40,400)這兩點(diǎn),
∴,
解得
∴函數(shù)關(guān)系式是:y=-10x+800(20≤x≤80)
(2)設(shè)工藝廠試銷該工藝品每天獲得的利潤(rùn)是W元,依題意得
W=(x-20)(-10x+800)
=-10x2+1000x-16000
=-10(x-50)2+9000,(20≤x≤80)
∴當(dāng)x=50時(shí),W有最大值9000.
所以,當(dāng)銷售單價(jià)定為50元∕件時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大,最大利潤(rùn)是9000元.
(3)對(duì)于函數(shù)W=-10(x-50)2+9000,當(dāng)x≤45時(shí),
W的值隨著x值的增大而增大,
∴銷售單價(jià)定為45元∕件時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,D、E、F是△ABC三邊的中點(diǎn),下列結(jié)論:①四邊形AEDF,BDEF,CDFE都是平行四邊形;②△ABC∽△DEF;③S△ABC=2S△DEF;④△DEF的周長(zhǎng)是△ABC周長(zhǎng)的一半,其中正確的序號(hào)是( 。
A. ①②④ B. ①②③ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿A→B→C→D 的路徑勻速前進(jìn)到D為止.在這個(gè)過(guò)程中,△APD的面積S隨時(shí)間t的變化關(guān)系用圖象表示正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC邊的中點(diǎn),點(diǎn)E,F分別在AC,AB上,且DE∥AB,EF∥BC.
(1)求證:CD=EF;
(2)已知∠ABC=60°,連接BE,若BE平分∠ABC,CD=6,求四邊形BDEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)正方形的邊長(zhǎng)都為1的正方形網(wǎng)格中,點(diǎn)都在格點(diǎn)上,從這四個(gè)點(diǎn)中任取三個(gè)點(diǎn)構(gòu)成三角形,則構(gòu)成的三角形中,不是直角三角形的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖像交y軸于C點(diǎn),交軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A、點(diǎn)B的橫坐標(biāo)是一元二次方程的兩個(gè)根.
(1)求出點(diǎn)A、點(diǎn)B的坐標(biāo)及該二次函數(shù)表達(dá)式.
(2)如圖2,連接AC、BC,點(diǎn)Q是線段OB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)O、B重合),過(guò)點(diǎn)Q作QD∥AC交于BC點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.
(3)如圖3,線段MN是直線y=x上的動(dòng)線段(點(diǎn)M在點(diǎn)N左側(cè)),且MN=,若M點(diǎn)的橫坐標(biāo)為n,過(guò)點(diǎn)M作x軸的垂線與x軸交于點(diǎn)P,過(guò)點(diǎn)N作x軸的垂線與拋物線交于點(diǎn)Q.以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能否為平行四邊形?若能,請(qǐng)求出n的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)全等的直角三角形重疊在一起,將其中的一個(gè)三角形沿著點(diǎn)B到C的方向平移到的位置,,,平移距離為6,則陰影部分面積為
A. 24 B. 40 C. 42 D. 48
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB與CD有怎樣的位置關(guān)系.
(2)如圖2已知AB∥EF,試猜想∠B,∠F,∠BCF之間的關(guān)系,寫(xiě)出這種關(guān)系,并加以證明.
(3)如圖3已知AB∥CD,試猜想∠1,∠2,∠3,∠4,∠5之間的關(guān)系,請(qǐng)直接寫(xiě)出這種關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,請(qǐng)分別根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號(hào)內(nèi)注明理由.
①∵ ∠B=∠3(已知),∴______∥______.(______,______)
②∵∠1=∠D (已知),∴______∥______.(______,______)
③∵∠2=∠A (已知),∴______∥______.(______,______)
④∵∠B+∠BCE=180° (已知),∴______∥______.(______,______)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com