【題目】如圖(1)中,ABCADE都是等腰直角三角形,∠ACB和∠D都是直角,點(diǎn)CAE上,ABC繞著A點(diǎn)經(jīng)過逆時(shí)針旋轉(zhuǎn)后能夠與ADE重合,再將圖(1)作為“基本圖形”繞著A點(diǎn)經(jīng)過逆時(shí)針旋轉(zhuǎn)得到圖(2).兩次旋轉(zhuǎn)的角度分別為(

A.45°90°B.90°45°C.60°,30°D.30°60°

【答案】A

【解析】

1中可知旋轉(zhuǎn)角是∠EAB,再結(jié)合等腰直角三角形的性質(zhì),易求∠EAB;圖2中是把圖1作為基本圖形,那么旋轉(zhuǎn)角就是∠FAB,結(jié)合等腰直角三角形的性質(zhì)易求∠FAB

根據(jù)圖1可知,

∵△ABCADE是等腰直角三角形,

∴∠CAB=45°

ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°可到ADE;

如圖,

∵△ABCADE是等腰直角三角形,

∴∠DAE=CAB=45°,

∴∠FAB=DAE+CAB=90°,

即圖1可以逆時(shí)針連續(xù)旋轉(zhuǎn)90°得到圖2

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)AB,C,其中AB=2,BC=1,如圖所示,設(shè)點(diǎn)A,BC所對(duì)應(yīng)數(shù)的和是p.

(1)若以B為原點(diǎn),寫出點(diǎn)A,C所對(duì)應(yīng)的數(shù),并計(jì)算p的值;若以C為原點(diǎn),p又是多少?

(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,若|ax2+bx+c|=k(k≠0)有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( )

A. k<-3 B. k>-3 C. k<3 D. k>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(+17)+(-12);

210+(―)―6―(―0.25);

3)(48 ;

4)|-54|-5×(-221÷(-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)國(guó)家發(fā)改委實(shí)施“階梯電價(jià)”的有關(guān)文件要求,某市結(jié)合地方實(shí)際,決定從41日起對(duì)居民生活用電試行“階梯電價(jià)”收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)見下表:

一戶居民一個(gè)月用電量的范圍

電費(fèi)價(jià)格(單位:元/度)

不超過150

超過150度的部分

今年5月份,該市居民甲用電100度,交電費(fèi)60元;居民乙用電200度,交電費(fèi)122.5元.

1)上表中, , ;

2)試行“階梯電價(jià)”收費(fèi)以后,該市一戶居民今年8月份平均電價(jià)每度為0.63元,求該用戶8月用電多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ACBD,折線AMB夾在兩條平行線間.(1)判斷∠M,A,B的關(guān)系;(2)請(qǐng)你嘗試改變問題中的某些條件,探索相應(yīng)的結(jié)論.建議:①折線中折線段數(shù)量增加到n(n=3,4,…);

②可如圖1,圖2,或M點(diǎn)在平行線外側(cè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCADE中,點(diǎn)EBC邊上,∠B=D,AB=AD,∠BAD=CAE,

1)求證:AE=AC

2)若∠AEC=60°,將ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與ABC重合,則這個(gè)旋轉(zhuǎn)角的度數(shù)__

3)若AC=4BC=7,∠AEC=60°,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某新建小區(qū)要在一塊等邊三角形內(nèi)修建一個(gè)圓形花壇.

(1)要使花壇面積最大,請(qǐng)你用尺規(guī)畫出圓形花壇示意圖;(保留作圖痕跡,不寫做法)

(2)若這個(gè)等邊三角形的周長(zhǎng)為36米,請(qǐng)計(jì)算出花壇的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過點(diǎn)C作CFCE交AB的延長(zhǎng)線于點(diǎn)F,EF交BC于點(diǎn)G.

(1)求證:CDE≌△CBF;

(2)當(dāng)DE=時(shí),求CG的長(zhǎng);

(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長(zhǎng);若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案