【題目】如圖,在⊙O的內(nèi)接四邊形ACDB中,AB為直徑,AC:BC=1:2,點(diǎn)D為弧AB的中點(diǎn),BE⊥CD垂足為E.
(1)求∠BCE的度數(shù);
(2)求證:D為CE的中點(diǎn);
(3)連接OE交BC于點(diǎn)F,若AB= ,求OE的長(zhǎng)度.

【答案】
(1)解:連接AD,

∵D為弧AB的中點(diǎn),

∴AD=BD,

∵AB為直徑,

∴∠ADB=90°,

∴∠DAB=∠DBA=45°,

∴∠DCB=∠DAB=45°


(2)證明:∵BE⊥CD,又∵∠ECB=45°,

∴∠CBE=45°,

∴CE=BE,

∵四邊形ACDB是圓O的內(nèi)接四邊形,

∴∠A+∠BDC=180°,

又∵∠BDE+∠BDC=180°,

∴∠A=∠BD,

又∵∠ACB=∠BED=90°,

∴△ABC∽△DBE,

∴DE:AC=BE:BC,

∴DE:BE=AC:BC=1:2,

又∵CE=BE,

∴DE:CE=1:2,

∴D為CE的中點(diǎn)


(3)解:連接EO,

∵CO=BO,CE=BE,

∴OE垂直平分BC,

∴F為BC中點(diǎn),

又∵O為AB中點(diǎn),

∴OF為△ABC的中位線,

∴OF= AC,

∵∠BEC=90°,EF為中線,

∴EF= BC,

在Rt△ACB中,AC2+BC2=AB2,

∵AC:BC=1:2,AB= ,

∴AC= ,BC=2 ,

∴OE=OF+EF=


【解析】(1)連接AD,由D為弧AB的中點(diǎn),得到AD=BD,根據(jù)圓周角定理即可得到結(jié)論;(2)由已知條件得到∠CBE=45°,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠A=∠BD,根據(jù)相似三角形的性質(zhì)得到DE:AC=BE:BC,即可得到結(jié)論.(3)連接CO,根據(jù)線段垂直平分線的判定定理得到OE垂直平分BC,由三角形的中位線到現(xiàn)在得到OF= AC,根據(jù)直角三角形的性質(zhì)得到EF= BC,由勾股定理即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某河堤的橫斷面是梯形ABCD,BC∥AD,BE⊥AD于點(diǎn)E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:

第一個(gè)等式:

第二個(gè)等式:

第三個(gè)等式:

第四個(gè)等式:

則式子__________________

用含n的代數(shù)式表示第n個(gè)等式: ____________________________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)同一種零件,在10天中兩臺(tái)機(jī)床每天生產(chǎn)的次品數(shù)如下:

甲:0,1,0,2,2,0,3,1,2,4;

乙:2,3,1,1,0,2,1,1,0,1.

(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù)和方差;

(2)從結(jié)果看,在10天中哪臺(tái)機(jī)床出現(xiàn)次品的波動(dòng)較小?

(3)由此推測(cè)哪臺(tái)機(jī)床的性能較好

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知M、N是線段AB的垂直平分線上任意兩點(diǎn),則∠MAN和∠MBN之間關(guān)系是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(7分)某學(xué)校舉行演講比賽,選出了10名同學(xué)擔(dān)任評(píng)委,并事先擬定從如下4個(gè)方案中選擇合理的方案來(lái)確定每個(gè)演講者的最后得分(滿分為10分):

方案1:所有評(píng)委所給分的平均數(shù),

方案2:在所有評(píng)委所給分中,去掉一個(gè)最高分和一個(gè)最低分.然后再計(jì)算其余給分的l平均數(shù).

方案3:所有評(píng)委所給分的中位效.

方案4:所有評(píng)委所給分的眾數(shù).

為了探究上述方案的合理性.先對(duì)某個(gè)同學(xué)的演講成績(jī)進(jìn)行了統(tǒng)計(jì)實(shí)驗(yàn).下面是這個(gè)同學(xué)的得分統(tǒng)計(jì)圖:

(1)分別按上述4個(gè)方案計(jì)算這個(gè)同學(xué)演講的最后得分;

(2)根據(jù)(1)中的結(jié)果,請(qǐng)用統(tǒng)計(jì)的知識(shí)說(shuō)明哪些方案不適臺(tái)作為這個(gè)同學(xué)演講的最后得分,并給出該同學(xué)的最后得分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O為直線AB上的一點(diǎn),CDAB于點(diǎn)OPOOE于點(diǎn)O,OM平分∠COE,點(diǎn)FOE的反向延長(zhǎng)線上.

(1)當(dāng)OP在∠BOC內(nèi),OE在∠BOD內(nèi)時(shí),如圖①所示,直接寫出∠POM和∠COF之間的數(shù)量關(guān)系;

(2)當(dāng)OP在∠AOC內(nèi)且OE在∠BOC內(nèi)時(shí),如圖②所示,試問(wèn)(1)中∠POM和∠COF之間的數(shù)量關(guān)系是否發(fā)生變化?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).

(1)求拋物線的解析式;
(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);
(3)在條件(2)下,在拋物線的對(duì)稱軸上找一點(diǎn)M,使得△BDM的周長(zhǎng)為最小,并求△BDM周長(zhǎng)的最小值及此時(shí)點(diǎn)M的坐標(biāo);
(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請(qǐng)求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點(diǎn)E,AB=9,cos∠BAC= ,tan∠DBC=
求:
(1)邊CD的長(zhǎng);
(2)△BCE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案