已知a、b為非零數(shù),求的值.

答案:略
解析:

解:∵a、b為非零數(shù),

∴分情況討論.

(1)a、b同號(hào):①a0b0,原式=.②a0,b0

原式

(2)a、b異號(hào):①a0b0,原式=.②a0,b0,

原式

的值為02或-2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究題
如圖是我國(guó)古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見(jiàn)我國(guó)古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對(duì)應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中按a次冪從大到小排列的項(xiàng)的系數(shù).規(guī)定任何非零數(shù)的零次冪為1,如(a+b)0=1.例如,
(a+b)1=a+b展開式中的系數(shù)1、1恰好對(duì)應(yīng)圖中第二行的數(shù)字;
(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對(duì)應(yīng)圖中第三行的數(shù)字;
(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對(duì)應(yīng)圖中第四行的數(shù)字.
(1)請(qǐng)認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

(2)類似地,請(qǐng)你探索并畫出(a-b)0,(a-b)1,(a-b)2,(a-b)3的展開式中按a次冪從大到小排列的項(xiàng)的系數(shù)對(duì)應(yīng)的三角形.
(3)探究解決問(wèn)題:已知a+b=3,a2+b2=5,求ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:038

已知a、b為非零數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:非常講解·教材全解全析數(shù)學(xué)八年級(jí)上(配課標(biāo)北師大版) 課標(biāo)北師大版 題型:044

已知表格

(1)把表格填完整(用計(jì)算器計(jì)算,保留2個(gè)有效數(shù)字)

(2)你發(fā)現(xiàn)了什么規(guī)律?

(3)若x為任意一個(gè)非零數(shù),請(qǐng)你猜想的值趨向于什么數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案