(8分)如圖,在梯形ABCD中,DCAB,DEBCDEAD。

(1)請問此時(shí)ABCD為等腰梯形嗎?說明你的理由;
(2)若∠B=60°,DC=4,AB=10,求梯形ABCD的周長。
(1)此時(shí)ABCD為等腰梯形;(2)26

試題分析:
(1)  證明:∵DEBC
∴∠B=∠DEA
DEAD
∴∠A=∠DEA
∴∠A=∠B
ABCD為等腰梯形
(2)∵DCAB,DEBC
∴四邊形DCBE是平行四邊形,所以DC=BE=4
AB=10
∴AE=6
∵∠B=60°
∴∠A=∠B=60°
DEAD
∴△DAE是等邊三角形
即DA=CB=6
∴梯形ABCD的周長為4+6+6+10=26
點(diǎn)評:此種試題較為簡單,要求學(xué)生對于四邊形性質(zhì)要靈活變動,多運(yùn)用圖像觀察。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)⊿ABC中,點(diǎn)O是AC上一動點(diǎn),過點(diǎn)O作直線MN∥BC,若MN交∠BCA的平分線于點(diǎn)
E,交∠DCA的平分線于點(diǎn)F,連接AE、AF。

⑴說明:OE=OF
⑵當(dāng)點(diǎn)O運(yùn)動到何處時(shí),四邊形AECF是矩形,證明你的結(jié)論
⑶在⑵的條件下,當(dāng)⊿ABC滿足什么條件時(shí),四邊形AECF為正方形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(9分)在平面直角坐標(biāo)系xOy中,點(diǎn)B(0,3),點(diǎn)Cx軸正半軸上一點(diǎn),連結(jié)BC,過點(diǎn)C作直線CPy軸.

(1)若含45°角的直角三角形如圖所示放置.其中,一個(gè)頂點(diǎn)與點(diǎn)O重合,直角頂點(diǎn)D在線段BC上,另一個(gè)頂點(diǎn)ECP上.求點(diǎn)C的坐標(biāo);
(2)若含30°角的直角三角形一個(gè)頂點(diǎn)與點(diǎn)O重合,直角頂點(diǎn)D在線段BC上,另一個(gè)頂點(diǎn)ECP上,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,E、F是□ABCD對角線AC上不重合的兩點(diǎn). 請你添加一個(gè)適當(dāng)?shù)臈l件,使四邊形DEBF是平行四邊形.添加的條件可以是          .(只需填寫一個(gè)正確的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若要使平行四邊形ABCD成為菱形.則需要添加的條件是           (     )
A.AB=CDB.AD=BCC.AB=BCD.AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,EDC邊上的點(diǎn),連接BE,將ΔBCE繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°得到ΔDCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為
A.10°B.15°
C.20°D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形的邊長是l0cm.一條對角線的長是12cm,則菱形的面積是   cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在四邊形ABCD中,對角線相交于點(diǎn)O;E、F、G、H分別是AD、BD、BC、AC的中點(diǎn).

(1)說明四邊形EFGH是平行四邊形;
(2)當(dāng)四邊形ABCD滿足一個(gè)什么條件時(shí),四邊形EFGH是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,□的周長為,相交于點(diǎn),,則的周長為     

查看答案和解析>>

同步練習(xí)冊答案