初三(1)班數(shù)學(xué)興趣小組在社會(huì)實(shí)踐活動(dòng)中,進(jìn)行了如下的課題研究:用一定長(zhǎng)度的鋁合金材料,將它設(shè)計(jì)成外觀為長(zhǎng)方形的三種框架,使長(zhǎng)方形框架面積最大.
小組討論后,同學(xué)們做了以下三種試驗(yàn):

請(qǐng)根據(jù)以上圖案回答下列問題:
(1)在圖案(1)中,如果鋁合金材料總長(zhǎng)度(圖中所有黑線的長(zhǎng)度和)為6米,當(dāng)AB為1米,長(zhǎng)方形框架ABCD的面積是______m2
(2)在圖案(2)中,如果鋁合金材料總長(zhǎng)度為6米,設(shè)AB為x米,長(zhǎng)方形框架ABCD的面積為S=______(用含x的代數(shù)式表示);當(dāng)AB=______時(shí)米,長(zhǎng)方形框架ABCD的面積S最大;在圖案(3)中,如果鋁合金材料總長(zhǎng)度為l米,設(shè)AB為x米,當(dāng)AB是多少米時(shí),長(zhǎng)方形框架ABCD的面積S最大.
(1)當(dāng)AB=1m時(shí),AD=
4
3
m,S長(zhǎng)方形框架ABCD=AB×AD=
4
3
m2;

(2)圖(2)中,設(shè)AB為x米,則AD=
6-3x
3
=2-x,
S長(zhǎng)方形框架ABCD=AB×AD=-x2+2x=-(x-1)2+1,
當(dāng)x=1時(shí),S取得最大值;
即當(dāng)AB=1米,長(zhǎng)方形框架ABCD的面積S最大.
圖(3)中,設(shè)AB為x米,則AD=
l-4x
3

S長(zhǎng)方形框架ABCD=AB×AD=-
4
3
x2+
l
3
x=-
4
3
(x-
l
8
2+
1
12
l2,
當(dāng)x=
l
8
,長(zhǎng)方形框架ABCD的面積S最大.
故答案為:
4
3
、-x2+2x、1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)y=x+m圖象過點(diǎn)A(1,0),交y軸于點(diǎn)B,C為y軸負(fù)半軸上一點(diǎn),且BC=2OB,過A、C兩點(diǎn)的拋物線交直線AB于點(diǎn)D,且CDx軸.
(1)求這條拋物線的解析式;
(2)觀察圖象,寫出使一次函數(shù)值小于二次函數(shù)值時(shí)x的取值范圍;
(3)在這條拋物線上是否存在一點(diǎn)M使得∠ADM為直角?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),已知拋物線y=ax2+b與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)M,點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)M的坐標(biāo)為(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)N的坐標(biāo)為(O,-3),作DN⊥y軸于點(diǎn)N,交拋物線于點(diǎn)D;直線y=-5垂直y軸于點(diǎn)C(0,-5);作DF垂直直線y=-5于點(diǎn)F,作BE垂直直線y=-5于點(diǎn)E.
①求線段的長(zhǎng)度:MC=______,MN=______;BE=______,BN=______;DF=______,DN=______;
②若P是這條拋物線上任意一點(diǎn),猜想:該點(diǎn)到直線y=-5的距離PH與該點(diǎn)到N點(diǎn)的距離PN有怎樣的數(shù)量關(guān)系?
(3)如圖(2),將N點(diǎn)改為拋物線y=x2-4x+3對(duì)稱軸上的一點(diǎn),直線y=-5改為直線y=m(m<-1),已知對(duì)于拋物線y=x2-4x+3上的每一點(diǎn),都有該點(diǎn)到直線y=m的距離等于該點(diǎn)到點(diǎn)N的距離,求m的值及點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,A(-1,0),B(0,2),一動(dòng)點(diǎn)P沿過B點(diǎn)且垂直于AB的射線BM運(yùn)動(dòng),P點(diǎn)的運(yùn)動(dòng)速度為每秒1個(gè)單位長(zhǎng)度,射線BM與x軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo).
(2)求過點(diǎn)A、B、C三點(diǎn)的拋物線的解析式.
(3)若P點(diǎn)開始運(yùn)動(dòng)時(shí),Q點(diǎn)也同時(shí)從C點(diǎn)出發(fā),以P點(diǎn)相同的速度沿x軸負(fù)方向向點(diǎn)A運(yùn)動(dòng),t秒后,以P、Q、C為頂點(diǎn)的三角形是等腰三角形.(點(diǎn)P到點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng)),求t的值.
(4)在(2)(3)的條件下,當(dāng)CQ=CP時(shí),求直線OP與拋物線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,以A為頂點(diǎn)的拋物線交y軸于點(diǎn)B.
(1)求這個(gè)拋物線的解析式;
(2)求出這個(gè)拋物線與x軸的交點(diǎn)坐標(biāo);
(3)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AC分別交x軸y軸于點(diǎn)A(8,0)、C,拋物線y=-
1
4
x2+bx+c(a≠0)經(jīng)過A,B兩點(diǎn);且OB=OC=
1
2
OA,一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,交拋物線于點(diǎn)P,連接PB、設(shè)直線l移動(dòng)的時(shí)間為t秒,
(1)求拋物線解析式;
(2)當(dāng)0<t<4時(shí),求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在直線l的移動(dòng)過程中,直線AC上是否存在一點(diǎn)Q,使得P、Q、B、A四點(diǎn)構(gòu)成的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

有一座拋物線形拱橋,正常水位時(shí)橋下水面寬度為20米,拱頂距離水面4米.設(shè)正常水位時(shí)橋下的水深為2米,為保證過往船只順利航行,橋下水面的寬度不得小于18米,則水深超過______米時(shí)就會(huì)影響過往船只在橋下的順利航行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c的部分圖象;如圖
(1)求該拋物線的表達(dá)式;
(2)寫出該拋物線的頂點(diǎn)坐標(biāo);
(3)觀察圖象指出,當(dāng)x分別取何值時(shí),有y>0,y<0;
(4)若拋物線與x軸的交點(diǎn)分別為點(diǎn)A與點(diǎn)B(A在B左側(cè)),在x軸上方的拋物線上是否存在點(diǎn)P,使S△PAB=8?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的二次函數(shù)y=x2-mx+
m2+1
2
y=x2-mx-
m2+2
2
,這兩個(gè)二次函數(shù)圖象中只有一個(gè)圖象與x軸交于A,B兩個(gè)不同的點(diǎn).
(l)試判斷哪個(gè)二次函數(shù)的圖象經(jīng)過A,B兩點(diǎn);
(2)若A點(diǎn)坐標(biāo)為(-1,0),試求該二次函數(shù)的對(duì)稱軸.

查看答案和解析>>

同步練習(xí)冊(cè)答案