如圖,在△ABC中,∠C=90°, AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過點(diǎn)D。求證:BC是⊙O切線.
證明見解析.

試題分析:如圖,連接OD.欲證BC是⊙O切線,只需證明OD⊥BC即可.
如圖,連接OD.設(shè)AB與⊙O交于點(diǎn)E.

∵AD是∠BAC的平分線,
∴∠BAC=2∠BAD,
又∵∠EOD=2∠EAD,
∴∠EOD=∠BAC,
∴OD∥AC.
∵∠ACB=90°,
∴∠BDO=90°,即OD⊥BC,
又∵OD是⊙O的半徑,
∴BC是⊙O切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC相切于點(diǎn)E,連接DE并延長(zhǎng)DE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:BD=BF;
(2)若CF=1,cosB=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
求證:EF是⊙O的切線。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)C、D分別在⊙O的半徑OA、OB的延長(zhǎng)線上,且OA=6,AC=4,CD平行于AB,并與AB相交于MN兩點(diǎn).若tan∠C=,則CN的長(zhǎng)為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的半徑為12cm,弦AB=16cm.
(1)求圓心O到弦AB的距離;
(2)如果弦AB的長(zhǎng)度保持不變,兩個(gè)端點(diǎn)在圓周上滑動(dòng),那么弦AB的中點(diǎn)形成什么樣的圖形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD內(nèi)接于⊙O,點(diǎn)P在劣弧AB上,連結(jié)DP,交AC于點(diǎn)Q.若QP=QO,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)圓錐的側(cè)面展開圖是圓心角為120°、半徑為15cm的扇形,則圓錐的底面半徑為       cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,邊長(zhǎng)為2正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45度后得到正方形,則在旋轉(zhuǎn)過程中點(diǎn)D到D’的路徑長(zhǎng)是       

查看答案和解析>>

同步練習(xí)冊(cè)答案