【題目】某校為組織代表隊參加市“拜炎帝、誦經(jīng)典”吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(x表示成績,單位:分),A組:75≤x<80;B組:80≤x<85;C組:85≤x<90;D組:90≤x<95;E組:95≤x<100.并繪制出如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)參加初賽的選手共有名,請補全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計圖中,C組對應的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?
(3)學校準備組成8人的代表隊參加市級決賽,E組6名選手直接進入代表隊,現(xiàn)要從D組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.

【答案】
(1)40
(2)解:C組對應的圓心角度數(shù)是:360°× =108°,

E組人數(shù)占參賽選手的百分比是: ×100%=15%


(3)解:畫樹狀圖得:

∵共有12種等可能的結果,抽取的兩人恰好是一男生和一女生的有8種結果,

∴抽取的兩人恰好是一男生和一女生的概率為 =


【解析】解:(1)參加初賽的選手共有:8÷20%=40(人), B組有:40×25%=10(人).
頻數(shù)分布直方圖補充如下:

故答案為40;
(1)用A組人數(shù)除以A組所占百分比得到參加初賽的選手總人數(shù),用總人數(shù)乘以B組所占百分比得到B組人數(shù),從而補全頻數(shù)分布直方圖;(2)用360度乘以C組所占百分比得到C組對應的圓心角度數(shù),用E組人數(shù)除以總人數(shù)得到E組人數(shù)占參賽選手的百分比;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好抽到一男生和一女生的情況,再利用概率公式即可求得答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(﹣3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,鏈接BM

(1)菱形ABCO的邊長
(2)求直線AC的解析式;
(3)動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,
①當0<t< 時,求S與t之間的函數(shù)關系式;
②在點P運動過程中,當S=3,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

平均成績/環(huán)

中位數(shù)/環(huán)

眾數(shù)/環(huán)

方差

a

7

7

1.2

7

b

8

c


(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】位于張家界核心景區(qū)的賀龍銅像,是我國近百年來最大的銅像.銅像由像體AD和底座CD兩部分組成.如圖,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像體AD的高度(最后結果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點P是OA上的一動點,點N(3,0)是OB上的一定點,點M是ON的中點,∠AOB=30°,要使PM+PN最小,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線y=﹣ x2 x+2 與其“夢想直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 , 點A的坐標為 , 點B的坐標為
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式: 第一個等式:
第二個等式:
第三個等式:
第四個等式:
按上述規(guī)律,回答下列問題:
(1)請寫出第六個等式:a6==
(2)用含n的代數(shù)式表示第n個等式:an==;
(3)a1+a2+a3+a4+a5+a6=(得出最簡結果);
(4)計算:a1+a2+…+an

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某地某個季度的氣溫情況,用適當?shù)某闃臃椒◤脑摰剡@個季度中抽取30天,對每天的最高氣溫x(單位:℃)進行調(diào)查,并將所得的數(shù)據(jù)按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五組,得到如圖頻數(shù)分布直方圖.

(1)求這30天最高氣溫的平均數(shù)和中位數(shù)(各組的實際數(shù)據(jù)用該組的組中值代表);
(2)每月按30天計算,各組的實際數(shù)據(jù)用該組的組中值代表,估計該地這個季度中最高氣溫超過(1)中平均數(shù)的天數(shù);
(3)如果從最高氣溫不低于24℃的兩組內(nèi)隨機選取兩天,請你直接寫出這兩天都在氣溫最高一組內(nèi)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形AOCB的頂點A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長度滿足方程|x﹣15|+ =0(OA>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點,將△BCN沿直線BN折疊,點C恰好落在直線MN上的點D處,且tan∠CBD=

(1)求點B的坐標;
(2)求直線BN的解析式;
(3)將直線BN以每秒1個單位長度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關于運動的時間t(0<t≤13)的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案