精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,E為CD的中點,F為BE上的一點,連結CF并延長交AB于點M,MN⊥CM交射線AD于點N.

(1)當F為BE中點時,求證:AM=CE;

(2)若,求的值.

【答案】(1)證明見解析 (2)3

【解析】

(1)根據矩形的對邊平行可得AB∥CD,再根據兩直線平行,內錯角相等求出∠BAC=∠FCO,然后利用“角角邊”證明△AOE和△COF全等,再根據全等三角形的即可得證;

(2)連接OB,根據等腰三角形三線合一的性質可得BO⊥EF,再根據矩形的性質可得OA=OB,根據等邊對等角的性質可得∠BAC=∠ABO,再根據三角形的內角和定理列式求出∠ABO=30°,即∠BAC=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.

解:(1)當F為BE中點時,如圖1,

則有BF=EF.

∵四邊形ABCD是矩形,

∴AB=DC,AB∥DC,

∴∠MBF=∠CEF,∠BMF=∠ECF.

在△BMF和△ECF中,

,

∴△BMF≌△ECF,

∴BM=EC.

∵E為CD的中點,

∴EC=DC,

∴BM=EC=DC=AB,

∴AM=BM=EC;

(2)如圖2所示:設MB=a,

∵四邊形ABCD是矩形,

∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,

∴△ECF∽△BMF,

∴EC:BM=EF:BF=2,

∴EC=2a,

∴AB=CD=2CE=4a,AM=AB﹣MB=3a.

∵AB:BC=2,

∴BC=AD=2a.

∵MN⊥MC,

∴∠CMN=90°,

∴∠AMN+∠BMC=90°.

∵∠A=90°,

∴∠ANM+∠AMN=90°,

∴∠BMC=∠ANM,

∴△AMN∽△BCM,

∴AN:BM=AM:BC,

∴AN:a=3a:2a,

∴AN=a,ND=AD﹣AN=2a﹣a=a,

=3.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等腰RtABC中,∠ACB90°,ACBCD是線段BC上一動點(不與點B、C重合),連接AD,延長BC至點E,使得CECD,過點EEFAD于點F,再延長EFAB于點M

1)若DBC的中點,AB4,求AD的長;

2)求證:BMCD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的邊AD與x軸平行,A、B兩點的橫坐標分別為1和3,反比例函數y=的圖象經過A、B兩點,則菱形ABCD的面積是_____;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,市防汛指揮部決定對某水庫的水壩進行加高加固設計師提供的方案是:水壩加高1(EF=1),背水坡AF的坡度i=11,已知AB=3,ABE=120°,求水壩原來的高度

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】知識是用來為人類服務的,我們應該把它們用于有意義的方面.下面就兩個情景請你作出評判.

情景一:從教室到圖書館,總有少數同學不走人行道而橫穿草坪,這是為什么呢?試用所學數學知識來說明這個問題.

情景二:A、B是河流l兩旁的兩個村莊,現要在河邊修一個抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請在圖中表示出抽水站點P的位置,并說明你的理由:

你贊同以上哪種做法?你認為應用數學知識為人類服務時應注意什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,國家規(guī)定休漁期間,我國漁政船在A處發(fā)現南偏西50°方向距A處20海里的點B處有一艘可疑船只,可疑船只正沿北偏西25°方向航行,我國漁政船立即沿北偏西70°方向前去攔截,經過1.5小時剛好在C處攔截住可疑船只,求該可疑船只航行的平均速度.

(結果精確到個位,參考數據: ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD中,點FCD上一點,EAD的中點,且DF2.在BC上找點G,使EGAF,則BG的長是___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有一個拋物線型蔬菜大棚,將其截面放在如圖所示的平面直角坐標系中,拋物線可以用函數yax2+bx來表示,已知OA=8米,距離O2米處的棚高BC米.

(1)求該拋物線的解析式;

(2)若借助橫梁DEDEOA)建一個門,要求門的高度為1.5米,求橫梁DE的長度是多少米?

查看答案和解析>>

同步練習冊答案