【題目】如圖,點、分別是的邊、上的點,平分、平分.
求證:;
若,,求證:四邊形是菱形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)由平行四邊形的性質(zhì)可得AB=CD,AD=BC,且∠B=∠D,再由CE=AF,可得BE=DF,即可利用SAS定理判定△ABE≌△CDF;
(2)首先證明四邊形AECF是平行四邊形,再根據(jù)AE=BE,可得∠ABE=∠BAE,由∠BAC=90°可得∠ABE+∠ACE=90°,∠BAE+∠EAC=90°,再根據(jù)等角的余角相等可得∠ACE=∠EAC,進而得到AE=EC,由一組鄰邊相等的平行四邊形是菱形證出結(jié)論.
證明:∵四邊形是平行四邊形,
∴,,,
∴,
∵平分、平分,
∴,,
∴,
在和中,
∴;
∵四邊形是平行四邊形,
∴,
∵,
∴四邊形是平行四邊形,
∵,
∴,
∵,
∴,.
∴,
∴,
∴平行四邊形是菱形.
∴四邊形是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】若所求的二次函數(shù)圖象與拋物線有相同的頂點,并且在對稱軸的左側(cè),隨的增大而增大,在對稱軸的右側(cè),隨的增大而減小,則所求二次函數(shù)的解析式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知D為△ABC內(nèi)一點,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=9,BC=5,則CD的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,點從開始沿折線以的速度運動,點從開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設(shè)運動時間為,當________時,四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC 中,AB=AC,∠BAC=90,D、E 分別在 BC、AC 邊上,連接 AD、BE 相交于點 F,且∠CAD=∠ABE.
(1)求證:BF=AC;
(2)如圖2,連接 CF,若 EF=EC,求∠CFD 的度數(shù);
(3)如圖3,在⑵的條件下,若 AE=3,求 BF 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圖的半徑的活動。小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工藝美術(shù)中,常需設(shè)計對稱圖案.在如圖的正方形網(wǎng)格中,點,的坐標分別為,.請在圖中再找一個格點,使它與已知的個格點組成軸對稱圖形,則點的坐標為________(如果滿足條件的點不止一個,請將它們的坐標都寫出來).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如圖1,c為y軸負半軸上一點,連CA,過點C作CD⊥CA,使CD=CA,連BD.求證:∠CBD=45°;
(3)如圖2,若有一等腰Rt△BMN,∠BMN=90°,連AN,取AN中點P,連PM、PO.試探究PM和PO的關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com