(2010•上海)已知梯形ABCD中,AD∥BC,AB=AD(如圖所示),∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)在圖中,用尺規(guī)作∠BAD的平分線AE(保留作圖痕跡,不寫作法),并證明四邊形ABED是菱形;
(2)∠ABC=60°,EC=2BE,求證:ED⊥DC.

【答案】分析:(1)分別以點(diǎn)B、D為圓心,以大于AB的長(zhǎng)度為半徑,分別作弧,且兩弧交于一點(diǎn)P,連接AP,則AP即為∠BAD的平分線,且AP交BC于點(diǎn)E;
可通過證△BOE≌△BOA,得AO=OE,則AD與BE平行且相等,由此證得四邊形ABED是平行四邊形,而AB=AD,根據(jù)一組鄰邊相等的平行四邊形是菱形,即可證得所求的結(jié)論;
(2)已知了EC、BE的比例關(guān)系,可用未知數(shù)表示出BE、EC的長(zhǎng);過D作DF⊥BC于F,在Rt△DEF中,易知∠DEF=∠ABC=60°,可用DE(即BE)的長(zhǎng)表示出EF、DF,進(jìn)而表示出FC的長(zhǎng);在Rt△CFD中,根據(jù)DF、CF的長(zhǎng),可由勾股定理求出CD的長(zhǎng),進(jìn)而可根據(jù)DE、EC、CD的長(zhǎng)由勾股定理證得DE⊥DC.
解答:(1)解:作圖如圖.
證明:在△ABO與△ADO中,
,
∴△ABO≌△ADO(SAS),
∴BO=OD,
∵AD∥BC,
∴∠OBE=∠ODA,∠OAD=∠OEB,
在△BOE與△DOA中,
,
∴△BOE≌△DOA(AAS),
∴BE=AD(平行且相等),
∴四邊形ABED為平行四邊形,另AB=AD,
∴四邊形ABED為菱形;

(2)證明:設(shè)DE=2a,則CE=4a,過點(diǎn)D作DF⊥BC,
∵∠ABC=60°,∴∠DEF=60°,
∴∠EDF=30°,∴EF=DE=a,
則DF=,CF=CE-EF=4a-a=3a,
,
∴DE=2a,EC=4a,CD=,構(gòu)成一組勾股數(shù),
∴△EDC為直角三角形,則ED⊥DC.
點(diǎn)評(píng):此題主要考查了梯形的性質(zhì)、尺規(guī)作圖-角平分線的作法、菱形的判定和性質(zhì)、勾股定理的應(yīng)用等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年上海市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•上海)已知函數(shù)f(x)=,那么f(-1)=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(04)(解析版) 題型:填空題

(2010•上海)已知函數(shù)f(x)=,那么f(-1)=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年上海市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•上海)已知一元二次方程x2+x-1=0,下列判斷正確的是( )
A.該方程有兩個(gè)相等的實(shí)數(shù)根
B.該方程有兩個(gè)不相等的實(shí)數(shù)根
C.該方程無實(shí)數(shù)根
D.該方程根的情況不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:填空題

(2010•上海)已知正方形ABCD中,點(diǎn)E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)E落在直線BC上的點(diǎn)F處,則F、C兩點(diǎn)的距離為   

查看答案和解析>>

同步練習(xí)冊(cè)答案