【題目】如圖,在四邊形中,,,,分別以點(diǎn)為圓心,大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn),作射線(xiàn)交于點(diǎn),交于點(diǎn).若點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)
【解析】
(1)連接AE,CE,由題意得AE=CE,根據(jù)等腰三角形中線(xiàn)的性質(zhì)得證AE=CE.
(2)連接CF,通過(guò)證明△AOF≌△COB(ASA),求得CF、DF的長(zhǎng),利用勾股定理求得CD的長(zhǎng).
(1)連接AE,CE,由題意可知,AE=CE
又∵O是AC的中點(diǎn),∴EO⊥AC即BE⊥AC
(2)連接CF,由(1)知,BE垂直平分AC,
∴AF=CF
∵AD∥BC,
∴∠DAC=∠BCA
在△AOF和△COB中
∴△AOF≌△COB(ASA)
∴AF=BC=2,
∴CF=AF=2,
∵AD=3,
∴DF=3-2=1
∵∠D=90°,
∴在Rt△CFD中,
答:CD的長(zhǎng)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠BAC=90°,用尺規(guī)過(guò)點(diǎn)A作一條直線(xiàn),使其將△ABC分成兩個(gè)相似的三角形,其作法不正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)劃建一個(gè)長(zhǎng)方形養(yǎng)雞場(chǎng),為了節(jié)省材料,利用一道足夠長(zhǎng)的墻做為養(yǎng)雞場(chǎng)的一邊,另三邊用鐵絲網(wǎng)圍成,如果鐵絲網(wǎng)的長(zhǎng)為35m.
(1)計(jì)劃建養(yǎng)雞場(chǎng)面積為150m2,則養(yǎng)雞場(chǎng)的長(zhǎng)和寬各為多少?
(2)能否建成的養(yǎng)雞場(chǎng)面積為160m2?如果能,請(qǐng)算出養(yǎng)雞場(chǎng)的長(zhǎng)和寬;如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿(mǎn)足市場(chǎng)需求,某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌
粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣(mài)出700盒,每盒售價(jià)每提高1元,每天要少賣(mài)出20盒.
(1)試求出每天的銷(xiāo)售量y(盒)與每盒售價(jià) (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn) (元)最大?最大利潤(rùn)是多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線(xiàn)CP與∠ABC平分線(xiàn)BP交于點(diǎn)P,若∠BPC=40°,則∠CAP的度數(shù)是( )
A. 30°; B. 40°; C. 50°; D. 60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,、、分別平分、、,下列結(jié)論:
①;
②;
③;
④.
其中正確的是__________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程x2-2(m+1)x+m2=0.
(1)當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?
(2)為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求這兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com