【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(0,4),動(dòng)點(diǎn)A以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)O出發(fā)沿x軸的正方向運(yùn)動(dòng),M是線段AC的中點(diǎn).將線段AM以點(diǎn)A為中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線段AB.過(guò)點(diǎn)B作x軸的垂線,垂足為E,過(guò)點(diǎn)C作y軸的垂線,交直線BE于點(diǎn)D.運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),求t的值;
(2)設(shè)△BCD的面積為S,當(dāng)t為何值時(shí),S=?
(3)連接MB,當(dāng)MB∥OA時(shí),如果拋物線y=ax2﹣10ax的頂點(diǎn)在△ABM內(nèi)部(不包括邊),求a的取值范圍.
【答案】(1)t=8(2)當(dāng)t=3或3+5時(shí),S=(3)-<a<-
【解析】解:(1)∵,,
∴.
∴Rt△CAO∽R(shí)t△ABE.·························· 2分
∴.
∴.∴.························· 3分
(2)由Rt△CAO∽R(shí)t△ABE可知:,.··········· 4分
當(dāng)0<<8時(shí),.
∴.····························· 6分
當(dāng)>8時(shí),.
∴,(為負(fù)數(shù),舍去).
當(dāng)或時(shí),.······················ 8分
(3)過(guò)M作MN⊥軸于N,則.
當(dāng)MB∥OA時(shí),,.··············· 9分
拋物線的頂點(diǎn)坐標(biāo)為(5,).············· 10分
它的頂點(diǎn)在直線上移動(dòng).
直線交MB于點(diǎn)(5,2),交AB于點(diǎn)(5,1).············· 11分
∴1<<2.
∴<<. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上A、B兩點(diǎn)分別對(duì)應(yīng)有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|,利用數(shù)形結(jié)合思想回答下列問(wèn)題:
(1)數(shù)軸上表示2和10兩點(diǎn)之間的距離是 ,數(shù)軸上表示2和﹣10兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上,x和﹣2兩點(diǎn)之間的距離是 ;
(3)若x表示一個(gè)有理數(shù),則|x﹣1|+|x+2|有最小值嗎?若有,請(qǐng)求出最小值,若沒(méi)有,寫出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小李做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
(1)請(qǐng)估計(jì):當(dāng)實(shí)驗(yàn)次數(shù)為5000次時(shí),摸到白球的頻率將會(huì)接近 ;(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;
(3)試驗(yàn)估算這個(gè)不透明的盒子里黑球有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(-3,0),B(0,3),DA⊥x軸,點(diǎn)C在OA上且∠CDB=∠ OBD,則∠CBD的度數(shù)是( )
A.72°B.60°C.45°D.36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)全等多邊形的定義,我們把四個(gè)角,四條邊分別相等的兩個(gè)凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1
(1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3,BC4,ADCD5,B90,D 60,則A1D1 ,B1 , A1C1 (直接寫出答案);
(2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD交 BE于點(diǎn)O,連接F,求證:AOBFOE;
(3)如圖 2,若ABA1B1,BCB1C1,CDC1D1,ADA1D1,BB1,求證:四邊形ABCD≌四邊形A1B1C1D1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上的一點(diǎn),BE=4,EC=8,將正方形邊AB延AE折疊刀AF,延長(zhǎng)EF交DC于G,連接AG,現(xiàn)在有如下結(jié)論:①∠EAG=45°;②GC=CF;③FC∥AG;④S△GFC=14.4;其中結(jié)論正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)汽車零件制造車間可以生產(chǎn)甲,乙兩種零件,生產(chǎn)4個(gè)甲種零件和3個(gè)乙種零件共獲利120元;生產(chǎn)2個(gè)甲種零件和5個(gè)乙種零件共獲利130元.
(1)求生產(chǎn)1個(gè)甲種零件,1個(gè)乙種零件分別獲利多少元?
(2)若該汽車零件制造車間共有工人30名,每名工人每天可生產(chǎn)甲種零件6個(gè)或乙種零件5個(gè),每名工人每天只能生產(chǎn)同一種零件,要使該車間每天生產(chǎn)的兩種零件所獲總利潤(rùn)超過(guò)2800元,至少要派多少名工人去生產(chǎn)乙種零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長(zhǎng)AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,在坡頂A處測(cè)得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com