如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
解:(1)設(shè)拋物線的解析式為y=ax2+bx+c
由拋物線與y軸交于點(diǎn)C(0,3),可知c=3.即拋物線的解析式為y=ax2+bx+3.
把點(diǎn)A(1,0)、點(diǎn)B(﹣3,0)代入,得解得a=﹣1,b=﹣2
∴拋物線的解析式為y=﹣x2﹣2x+3.
∵y=﹣x2﹣2x+3=﹣(x+1)2+4
∴頂點(diǎn)D的坐標(biāo)為(﹣1,4);
(2)△BCD是直角三角形.
理由如下:解法一:過點(diǎn)D分別作x軸、y軸的垂線,垂足分別為E、F.
∵在Rt△BOC中,OB=3,OC=3,
∴BC2=OB2+OC2=18
在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1,
∴CD2=DF2+CF2=2
在Rt△BDE中,DE=4,BE=OB﹣OE=3﹣1=2,
∴BD2=DE2+BE2=20
∴BC2+CD2=BD2
∴△BCD為直角三角形.
解法二:過點(diǎn)D作DF⊥y軸于點(diǎn)F.
在Rt△BOC中,∵OB=3,OC=3
∴OB=OC∴∠OCB=45°
∵在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1
∴DF=CF
∴∠DCF=45°
∴∠BCD=180°﹣∠DCF﹣∠OCB=90°
∴△BCD為直角三角形.
(3)①△BCD的三邊,==,又=,故當(dāng)P是原點(diǎn)O時(shí),△ACP∽△DBC;
②當(dāng)AC是直角邊時(shí),若AC與CD是對應(yīng)邊,設(shè)P的坐標(biāo)是(0,a),則PC=3﹣a,=,即=,解得:a=﹣9,則P的坐標(biāo)是(0,﹣9),三角形ACP不是直角三角形,則△ACP∽△CBD不成立;
③當(dāng)AC是直角邊,若AC與BC是對應(yīng)邊時(shí),設(shè)P的坐標(biāo)是(0,b),則PC=3﹣b,則=,即=,解得:b=﹣,故P是(0,﹣)時(shí),則△ACP∽△CBD一定成立;
④當(dāng)P在x軸上時(shí),AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標(biāo)是(d,0).
則AP=1﹣d,當(dāng)AC與CD是對應(yīng)邊時(shí),=,即=,解得:d=1﹣3,此時(shí),兩個(gè)三角形不相似;
⑤當(dāng)P在x軸上時(shí),AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標(biāo)是(e,0).
則AP=1﹣e,當(dāng)AC與DC是對應(yīng)邊時(shí),=,即=,解得:e=﹣9,符合條件.
總之,符合條件的點(diǎn)P的坐標(biāo)為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于二次函數(shù),以下結(jié)論:①不論取何值,拋物線總經(jīng)過點(diǎn)(1,0);②拋物線與軸一定有兩個(gè)交點(diǎn);③若6,拋物線交軸于A、B兩點(diǎn),則AB;④拋物線的頂點(diǎn)在圖像上.上述說法錯誤的序號是____ _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則y1>y2.其中說法正確的是( 。
A.①② B.②③ C.①②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
以方程組的解為坐標(biāo)的點(diǎn)在平面直角坐標(biāo)系中的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,把拋物線y=x2+1向上平移3個(gè)單位,再向左平移1個(gè)單位,則所得拋物線的解析式是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com