【題目】RtABC中,∠A=90°,角平分線AE、中線AD、高線AH的大小關(guān)系是( 。
A.AHAEAD
B.AHADAE
C.AHADAE
D.AHAEAD

【答案】D
【解析】①RtABC中,AB=AC;(圖①)

根據(jù)等腰三角形三線合一的性質(zhì)知:
AD、AHAE互相重合,此時(shí)AD=AH=AE;
RtABC中,ABAC;(設(shè)ACAB , 如圖②)
RtAHE中,由于AE是斜邊,故AEAH;
同理可證ADAH
∵∠AED>∠AHD=90°,∠ADH<∠AHE=90°
∴∠AED>∠ADE;
根據(jù)大角對(duì)大邊知:ADAE;
ADAEAH;
綜上所述,角平分線AE、中線AD、高線AH的大小關(guān)系是AHAEAD;
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有兩個(gè)不相等的實(shí)數(shù)根 (Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若兩個(gè)實(shí)數(shù)根的平方和等于15,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB:BC:CA=3:4:5,且周長為36cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng);點(diǎn)Q從點(diǎn)B沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng);如果同時(shí)出發(fā),則過3秒時(shí),求BPQ的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CABBC于點(diǎn)DDE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB , 坡面AC的傾斜角為45°為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.

(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?

(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購買溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過10000元,請(qǐng)你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC , ∠B=30°,∠C=60°,E、FM、N分別為AB、CD、BC、DA的中點(diǎn),若BC=7,MN=3,則EF為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC中,AB=AC,D,E分別為邊AB,AC上的點(diǎn),DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,則∠DEA=(  )

A. 40° B. 50° C. 60° D. 70°

查看答案和解析>>

同步練習(xí)冊(cè)答案