【題目】如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線交BC于點D,以D為圓心,D長為半徑作作⊙D.
⑴求證:AC是⊙D的切線.
⑵設AC與⊙D切于點E,DB=1,連接DE,BF,EF.
①當∠BAD= 時,四邊形BDEF為菱形;
②當AB= 時,△CDE為等腰三角形.
【答案】(1)見解析;(2)①30°,②+1
【解析】
(1) 作DE⊥AC于M,由∠ABC=90°,進一步說明DM=DB,即DB是⊙D的半徑,即可完成證明;
(2)①先說明△BDF是等邊三角形,再運用直角三角形的內(nèi)角和定理解答即可;②先說明DE=CE=BD=1,再設AB=x,則AE=x,分別表示出AC、BC、AB的長,然后再運用 勾股定理 解答即可.
⑴證明:如圖:作DE⊥AC于M,
∵∠ABC=90°,∠BAC的平分線交BC于點D,
∴DE=DB.
∴DM是⊙D的半徑,
∴AC是⊙D的切線;
⑵①如圖:
∵四邊形BDEF為菱形;
∴△BDF是等邊三角形
∴∠ADB=60°
∴∠BAD=90°-60°=30°
∴當∠BAD=30°時,四邊形BDEF為菱形;
②∵△CDE為等腰三角形.
∴DE=CE=BD=1,
∴DC=
設AB=x,則AE=x
∴在Rt△ABC中,AB=x,AC=1+x,BC=1+
∴ ,解得x=+1
∴當AB=+1時,△CDE為等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:坐標平面內(nèi),對于拋物線y=ax2+bx(a≠0),我們把點(﹣,)稱為該拋物線的焦點,把y=﹣稱為該拋物線的準線方程.例如,拋物線y=x2+2x的焦點為(﹣1,﹣),準線方程是y=﹣.根據(jù)材料,現(xiàn)已知拋物線y=ax2+bx(a≠0)焦點的縱坐標為3,準線方程為y=5,則關于二次函數(shù)y=ax2+bx的最值情況,下列說法中正確的是( 。
A.最大值為4B.最小值為4
C.最大值為3.5D.最小值為3.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D.過點D作DE⊥AD交AB于點E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=6,BC=8,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果基地為了選出適應市場需求的小西紅柿秧苗,在條件基本相同的情況下,把兩個品種的小西紅柿秧苗各300株分別種植在甲、乙兩個大棚.對于市場最為關注的產(chǎn)量和產(chǎn)量的穩(wěn)定性,進行了抽樣調(diào)查,過程如下,請補充完整.
收集數(shù)據(jù) 從甲、乙兩個大棚各收集了25株秧苗上的小西紅柿的個數(shù):
甲 26 32 40 51 44 74 44 63 73 74 81 54 62 41 33 54 43 34 51 63 64 73 64 54 33
乙 27 35 46 55 48 36 47 68 82 48 57 66 75 27 36 57 57 66 58 61 71 38 47 46 71
整理、描述數(shù)據(jù) 按如下分組整理、描述這兩組樣本數(shù)據(jù)
個數(shù) 株數(shù) 大棚 | ||||||
甲 | 5 | 5 | 5 | 5 | 4 | 1 |
乙 | 2 | 4 | 6 | 2 |
(說明:45個以下為產(chǎn)量不合格,45個及以上為產(chǎn)量合格,其中45~65個為產(chǎn)量良好,65~85個為產(chǎn)量優(yōu)秀)
分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和方差如下表所示:
大棚 | 平均數(shù) | 眾數(shù) | 方差 |
甲 | 53 | 54 | 3047 |
乙 | 53 | 57 | 3022 |
得出結論:(1)估計乙大棚產(chǎn)量優(yōu)秀的秧苗數(shù)為__________株;
(2)可以推斷出__________大棚的小西紅柿秧苗品種更適應市場需求,理由為_____________________.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一個三角形繞其中一個頂點逆時針旋轉(zhuǎn)并放大或縮。ㄟ@個頂點不變),我們把這樣的三角形
運動稱為三角形的T-變換,這個頂點稱為T-變換中心,旋轉(zhuǎn)角稱為T-變換角,三角形與原三角形的對應邊
之比稱為T-變換比;已知△在直角坐標平面內(nèi),點,,,將△進
行T-變換,T-變換中心為點,T-變換角為60°,T-變換比為,那么經(jīng)過T-變換后點所對應的點的
坐標為 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,,點,分別是邊,的中點,連接.將繞點按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為.
(1)問題發(fā)現(xiàn)
①當時, ;②當時, .
(2)拓展探究
試判斷:當時,的大小有無變化?請僅就圖2的情況給出證明.
(3)問題解決
當旋轉(zhuǎn)至A、B、E三點共線時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點P,過A作直線AC⊥PC交⊙O于另一點D,連接PA、PB.
(1)求證:AP平分∠CAB;
(2)若P是直徑AB上方半圓弧上一動點,⊙O的半徑為2,則
①當弦AP的長是_____時,以A,O,P,C為頂點的四邊形是正方形;
②當的長度是______時,以A,D,O,P為頂點的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點D在邊AB上.
(1)如圖1,當點E在邊BC上時,求證DE=EB;
(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關系,并加以證明;
(3)如圖3,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為原點,一次函數(shù)與反比例函數(shù)的圖象相交于A(2,1)B(-1,-2)兩點,與軸相交于點C.
(1)分別求反比例函數(shù)和一次函數(shù)的解析式(關系式);
(2)連接OA,求△AOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com