【題目】如圖1,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點H.
(1)求證:EB=GD且EB⊥GD;
(2)若AB=2,AG=,求的長;
(3)如圖2,正方形AEFG繞點A逆時針旋轉(zhuǎn)連結(jié)DE,BG,與的面積之差是否會發(fā)生變化?若不變,請求出與的面積之差;若變化,請說明理由.
【答案】(1)見解析; (2) ;(3)不變,與的面積之差為0
【解析】
(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB,從而△EAB≌△GAD,即EB=GD;由∠AEB=∠AGD,∠EOH=∠AOG,即可得出∠EHG=∠EAG=90°;
(2)設BD與AC交于點O,由AB=AD=2,在Rt△ABD中求得DB,在Rt△GOD中利用勾股定理即可求得結(jié)果;
(3)作BQ⊥GA交GA的延長線于Q,作DP⊥EA交EA于P,可證得∠1=∠2,根據(jù)“AAS”可判斷△PDA≌△QBA,所以PD=BQ,然后根據(jù)三角形面積公式得到,保持不變.
(1)如圖1,
∵四邊形EFGA和四邊形ABCD是正方形,
∴AG=AE,AB=AD,∠EAG=90°,∠DAB=90°,
∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
∴∠GAD=∠EAB,
在△EAB和△GAD中,
,
∴△EAB≌△GAD(SAS),
∴EB=GD;∠AEB=∠AGD,
∵∠EOH=∠AOG,
∴∠EHG=∠EAG=90°,
∴EB=GD且EB⊥GD;
(2)如圖2,連接BD,BD與AC交于點O,
∵AB=AD=2,
在Rt△ABD中,,
∴AO=DO=,
∴,
∴;
(3)不變,.理由如下:
作BQ⊥GA交GA的延長線于Q,作DP⊥EA交EA于P,如圖3,
正方形ABCD和正方形AEFG中,
∠EAG=∠DAB=90°,AD=AB,
∴∠EAD+∠BAG+∠EAG+∠DAB =360,則∠BAG=180°-∠EAD,
∵∠1=90°-∠EAD,∠2=∠BAG -90°=180°-∠EAD -90°=90°-∠EAD,
∴∠1=∠2,
在△PDA和△QBA中,
,
∴△PDA≌△QBA(AAS),
∴DP=BQ,
∵,,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)的整數(shù)部分是______,小數(shù)部分是______;
(2)的整數(shù)部分是______,小數(shù)部分是_____;
(3)若設整數(shù)部分是x,小數(shù)部分是y,求x﹣y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個裝有進水管和出水管的容器,根據(jù)實際需要,從某時刻開始的2分鐘內(nèi)只進水不出水,在隨后的4分鐘內(nèi)既進水又出水,接著關(guān)閉進水管直到容器內(nèi)的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:升)與時間x(單位:分鐘)之間的部分關(guān)系如圖所示.
(1)當2≤x≤6時,求y與x的表達式;
(2)請將圖象補充完整;
(3)從進水管開始進水起,求該容器內(nèi)的水量不少于7.5升所持續(xù)時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高學生的身體素質(zhì),并爭取在學校的體育節(jié)中獲得好成績,班級準備從體育用品商店購買跳繩和毽子.已知購買5個毽子和3根跳繩共需85元,購買4個毽子和5根跳繩共需120元.
(1)求一個毽子和一根跳繩各需多少元?
(2)由于購買量大,商店給出如下優(yōu)惠:毽子6個一盒,整盒出售,每盒27元,跳繩八折優(yōu)惠.已知班級需要購買的毽子數(shù)比跳繩數(shù)的2倍多10,總費用不超過395元.問班級最多能購買多少根跳繩?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,A(a,0),B(0,b),且a,b滿足,連接AB,AB=5.C(-7,0)是x軸負半軸上一點,連接BC.
(1)求OA、OB的長;
(2)動點P從點B出發(fā),沿BA以每秒2個單位的速度向終點A勻速運動,連接CP,設點P的運動時間為t,△CBP的面積為S,用含t的代數(shù)式表示S(不要求寫出t的取值范圍)
(3)在(2)的條件下,連接OP,是否存在t值,使S△BCP=S△PCO,如果存在,求出相應的t值,并直接寫出P點坐標.若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小剛進行賽跑訓練,他們選擇了一個土坡,按同一路線同時出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1. 5倍.設兩人出發(fā)x min后距出發(fā)點的距離為y m.圖中折線段OBA表示小明在整個訓練中y與x的函數(shù)關(guān)系,其中點A在x軸上,點B坐標為(2,480).
(1)點B所表示的實際意義是 ;
(2)求出AB所在直線的函數(shù)關(guān)系式;
(3)如果小剛上坡平均速度是小明上坡平均速度的一半,那么兩人出發(fā)后多長時間第一次相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)都可以進行這樣的分解:(是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對值最小,我們就稱是的最佳分解,并規(guī)定.
例如:18可以分解成,,,因為,所以是18的最佳分解,所以.
(1)如果一個正整數(shù)是另外一個正整數(shù)的平方,我們稱正整數(shù)是完全平方數(shù).
求證:對任意一個完全平方數(shù),總有;
(2)如果一個兩位正整數(shù),(,為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù),得到的新數(shù)減去原來的兩位正整數(shù)所得的差為9,那么我們稱這個為“求真抱樸數(shù)”,求所有的“求真抱樸數(shù)”;
(3)在(2)所得的“求真抱樸數(shù)”中,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形OABC,點C在x軸上,直線y=x經(jīng)過點A,菱形OABC的邊長是,若反比例函數(shù)y=的圖象經(jīng)過點B,則k的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com