【題目】如圖,菱形ABCD中,AB=2,B=60°,MAB的中點.動點P在菱形的邊上從點B出發(fā),沿B→C→D的方向運(yùn)動,到達(dá)點D時停止.連接MP,設(shè)點P運(yùn)動的路程為x,MP 2=y,則表示yx的函數(shù)關(guān)系的圖象大致為(  )

A. B. C. D.

【答案】B

【解析】試題分析:分三種情況:(1)當(dāng)0≤x≤時,(2)當(dāng)x≤2時,(3)當(dāng)2x≤4時,根據(jù)勾股定理列出函數(shù)解析式,判斷其圖象即可求出結(jié)果.

解:(1)當(dāng)0≤x≤時,

如圖1,過MME⊥BCE,

∵M(jìn)AB的中點,AB=2,

∴BM=1

∵∠B=60°,

∴BE=ME=,PE=﹣x

Rt△BME中,由勾股定理得:MP2=ME2+PE2,

∴y==x2﹣x+1;

2)當(dāng)x≤2時,

如圖2,過MME⊥BCE

由(1)知BM=1,∠B=60°

∴BE=,ME=PE=x﹣,

∴MP2=ME2+PE2

∴y==x2﹣x+1;

3)當(dāng)2x≤4時,

如圖3,連結(jié)MC,

∵BM=1BC=AB=2,∠B=60°,

∴∠BMC=90°,MC==,

∵AB∥DC,

∴∠MCD=∠BMC=90°,

∴MP2=MC2+PC2

∴y==x2﹣4x+7;綜合(1)(2)(3),只有B選項符合題意.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在的正方形網(wǎng)格中,從點出發(fā)的四條線段,,,,它的另一個端點,,均在格點上(正方形網(wǎng)格的交點).

1)若每個小正方形的邊長都是1,分別求出,,的長度(結(jié)果保留根號).

2)在,,四條線段中,是否存在三條線段,它們能構(gòu)成直角三角形?如果存在,請指出是哪三條線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A﹣3,﹣2)、B﹣1﹣4

1)直接寫出:SOAB=      ;

2)延長ABy軸于P點,求P點坐標(biāo);

3Q點在y軸上,以A、BO、Q為頂點的四邊形面積為6,求Q點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標(biāo)系,△AOB的頂點均在格點上,點O為原點,點A、B的坐標(biāo)分別是A32)、B1,3).

1)將△AOB向下平移3個單位后得到△A1O1B1,則點B1的坐標(biāo)為 ;

2)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A2OB2,請在圖中作出△A2OB2,并求出這時點A2的坐標(biāo)為 ;

3)在(2)中的旋轉(zhuǎn)過程中,線段OA掃過的圖形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,ABx軸上兩點,CDy軸上兩點,經(jīng)過點A,C,B的拋物線的一部分C1與經(jīng)過點A,D,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0 ),點M是拋物線C2y=mx2-2mx-3mm0)的頂點

1)求AB兩點的坐標(biāo);

2)求經(jīng)過點A,C,B的拋物線C1的函數(shù)表達(dá)式.

3)探究“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出點P的坐標(biāo)及PBC面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3610,這樣的數(shù)稱為三角形數(shù),而把1,4,9,16這樣的數(shù)稱為正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1正方形數(shù)都可以看作兩個相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是(  )

A. 9=4+5B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象過點A﹣30)和點B1,0),且與y軸交于點C,D點在拋物線上且橫坐標(biāo)是﹣2

1)求拋物線的解析式;

2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?

(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?

(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在四邊形ABCD中,ABCD,E,F(xiàn)為對角線AC上兩點,且AE=CF,DFBE,AC平分BAD.求證:四邊形ABCD為菱形.

查看答案和解析>>

同步練習(xí)冊答案