【題目】如圖,已知AB=8,P為線段AB上一個動點,分別以AP,PB為邊在AB的同側(cè)作菱形APCDPBFE,點P,C,E在一條直線上,∠DAP=60°,M,N分別是對角線AC,BE的中點,當(dāng)點P在線段AB上移動時,點M,N之間的距離最短為( )

A. B. C. 4D. 3

【答案】A

【解析】

連接PM、PN,推出∠MPN=60°+30°=90°,在RtPMN中利用勾股定理即可.

連接PM、PN.

四邊形APCD,四邊形PBFE是菱形,∠DAP=60°,

∴∠APC=120°,∠EPB=60°,

∵M,N分別是對角線AC,BE的中點,

∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,

∴∠MPN=60°+30°=90°,

設(shè)PA=2a,則PB=8﹣2a,PM=a,PN=(4﹣a),

∴MN=,

∴a=3時,MN有最小值,最小值為2,

故答案選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點E,頂點A在第二象限,頂點By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標(biāo)為5,BE=3DE,則k的值為(  )

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生國學(xué)經(jīng)典大賽.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機抽取一個比賽項目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中唐詩且小明抽中宋詞的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“慈善一日捐”活動中,為了解某校學(xué)生的捐款情況,抽樣調(diào)查了該校部分學(xué)生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計圖.

1)本次調(diào)查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;

2)求這組數(shù)據(jù)的平均數(shù);

3)該校共有學(xué)生參與捐款,請你估計該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,已知∠C=90°,∠B=55°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉(zhuǎn)m0m180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m為( )

A70° B70°120°

C120° D80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸于A,B兩點,交y軸于點C.直線經(jīng)過點A,C

1)求拋物線的解析式;

2)點P是拋物線上一動點,過點Px軸的垂線,交直線AC于點M,設(shè)點P的橫坐標(biāo)為m

①當(dāng)是直角三角形時,求點P的坐標(biāo);

②作點B關(guān)于點C的對稱點,則平面內(nèi)存在直線l,使點M,B,到該直線的距離都相等.當(dāng)點Py軸右側(cè)的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(k,b可用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,點分別在邊上,,連接,點分別為的中點.

1)觀察猜想

1中,線段的數(shù)量關(guān)系是________,的度數(shù)是________;

2)探究證明

繞點逆時針方向旋轉(zhuǎn)到圖2的位置,連接,判斷的形狀,并說明理由;

3)拓展延伸

繞點在平面內(nèi)自由旋轉(zhuǎn),若,請直接寫出面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca,b,c是常數(shù),a0)的自變量x與函數(shù)值y的部分對應(yīng)值如表:

x

2

1

0

1

2

yax2+bx+c

t

m

2

2

n

且當(dāng)x時,與其對應(yīng)的函數(shù)值y0,有下列結(jié)論:

abc0;mn;23是關(guān)于x的方程ax2+bx+ct的兩個根;

其中,正確結(jié)論的個數(shù)是( 。.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,一次函數(shù)yax+c和二次函數(shù)y=﹣ax2+c(a≠c)的圖象大致為(  )

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案