【題目】如圖1,四邊形ABCD是菱形,AD=5,過點(diǎn)D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動時間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
【答案】(1)證明見解析(2);(3); (4).
【解析】試題分析:(1)根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論;
(2)根據(jù)勾股定理即可得到結(jié)論;
(3)由△BCM≌△DCM計算出BM=DM,分兩種情況計算即可;
(4)由菱形的性質(zhì)判斷出△ADM≌△ABM,再判斷出△BMP是等腰三角形,即可得出結(jié)論.
試題解析:解:(1)∵AC是菱形ABCD的對角線,∴∠ACD=∠ACB,CD=CB.在△DCM和△BCM中,∵CD=CB,∠DCM=∠BCM,CM=CM,∴△DCM≌△BCM,∴DM=BM;
(2)在Rt△ADH中,AD=5,AH=3,∴DH=4.在Rt△BHM中,BM=DM,HM=DH﹣DM=4﹣DM,BH=AB﹣AH=2,根據(jù)勾股定理得:DM2﹣MH2=BH2,即:DM2﹣(4﹣DM)2=4,∴DM=,∴MH=;
(3)在△BCM和△DCM中,∵CM=CN,∠ACD=∠ACB,CB=CD,∴△BCM≌△DCM,∴BM=DM=,∠CDM=∠CBM=90°.
①當(dāng)P在AB之間時,即0<t<2.5時,S=(5﹣2t)×=﹣t+;
②當(dāng)P在BC之間時,即2.5<t≤5時,S=(2t﹣5)×=t﹣;
綜上所述: ;
(4)存在.∵∠ADM+∠BAD=90°,∠BCD=∠BAD,∴∠ADM+∠BCD=90°.∵∠MPB+∠BCD=90°,∴∠MPB=∠ADM.∵四邊形ABCD是菱形,∴∠DAM=∠BAM.∵AM=AM,∴△ADM≌△ABM,∴∠ADM=∠ABM,∴∠MPB=∠ABM.∴MP=MB.∵MH⊥AB,∴PH=BH=2,∴BP=2BH=4.∵AB=5,∴AP=1,∴t==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點(diǎn),AC與DE交于P點(diǎn),以直線BC為x軸,點(diǎn)E為原點(diǎn)建立直角坐標(biāo)系.
(1)求△ABC與△DEF的頂點(diǎn)坐標(biāo);
(2)判斷△PEC的形狀;
(3)求△PEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線段AC上的一個動點(diǎn),過點(diǎn)Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線段AB上時,求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中結(jié)論正確的個數(shù)為( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,C,其中AB=2,BC=1,如圖所示.設(shè)點(diǎn)A,B,C所對應(yīng)數(shù)的和是p.
(1)若以B為原點(diǎn),寫出點(diǎn)A,C所對應(yīng)的數(shù),并計算p的值;若以C為原點(diǎn),p又是多少?
(2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且CO=28,求p.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔(dān)一項(xiàng)筑路任務(wù),甲隊單獨(dú)施工完成此項(xiàng)任務(wù)比乙隊單獨(dú)施工完成此項(xiàng)任務(wù)多用10天,且甲隊單獨(dú)施工45天和乙隊單獨(dú)施工30天的工作量相同.
(1)甲、乙兩隊單獨(dú)完成此項(xiàng)任務(wù)各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設(shè)備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進(jìn)度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨(dú)施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=kx+b的自變量的取值范圍是-3≤x≤6,則相應(yīng)函數(shù)值的取值范圍是-5≤y≤-2,這個函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點(diǎn)O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,
(1)求∠DOE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AC上一點(diǎn),OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi)部,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com