【題目】如圖,已知:在△ABC中,AB=AC,BD是AC邊上的中線,AB=13,BC=10,
(1)求△ABC的面積;
(2)求tan∠DBC的值.
【答案】(1)60;(2).
【解析】
(1)作等腰三角形底邊上的高AH并根據(jù)勾股定理求出,再根據(jù)三角形面積公式即可求解;
(2)方法一:作等腰三角形底邊上的高AH并根據(jù)勾股定理求出,與BD交點為E,則E是三角形的重心,再根據(jù)三角形重心的性質(zhì)求出EH,∠DBC的正切值即可求出.
方法二:過點A、D分別作AH⊥BC、DF⊥BC,垂足分別為點H、F,先根據(jù)勾股定理求出AH的長,再根據(jù)三角形中位線定理求出DF的長,BF的長就等于BC的,∠DBC的正切值即可求出.
解:(1)過點A作AH⊥BC,垂足為點H,交BD于點E.
∵AB=AC=13,AH⊥BC,BC=10
∴BH=5
在Rt△ABH中,AH==12,
∴△ABC的面積=;
(2)方法一:過點A作AH⊥BC,垂足為點H,交BD于點E.
∵AB=AC=13,AH⊥BC,BC=10
∴BH=5
在Rt△ABH中,AH==12
∵BD是AC邊上的中線
所以點E是△ABC的重心
∴EH==4,
∴在Rt△EBH中,tan∠DBC==.
方法二:過點A、D分別作AH⊥BC、DF⊥BC,垂足分別為點H、F.
∵AB=AC=13,AH⊥BC,BC=10
∴BH=CH=5
在Rt△ABH中,AH==12
∵AH⊥BC、DF⊥BC
∴AH∥DF,D為AC中點,
∴DF=AH=6,
∴BF=
∴在Rt△DBF中,tan∠DBC==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線與x軸交于B、C兩點,與y軸交于點A(0,3),且OA=OC.
(1)求拋物線的解析式;
(2)點P是直線AC上方拋物線上的一點,過點P作PD⊥x軸于點D.若△PDC與△AOB相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B 的坐標為(8,4),反比例函數(shù)y=(k>0)的圖象分別交邊BC、AB 于點D、E,連結DE,△DEF與△DEB關于直線DE對稱,當點F恰好落在線段OA上時,則k的值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點D、F分別在AC、BC邊上,C、D兩點不重合,設CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關系的是( )
A. (A) B. (B) C. (C) D. (D)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,經(jīng)市場預測,銷售單價為40元時,可售出600個;而銷售單價每漲1元,銷售量將減少10個.設每個銷售單價為元.
(1)寫出銷售量(件)和獲得利潤(元)與銷售單價(元)之間的函數(shù)關系;
(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是對角線BD上任意一點,連接AE并延長AE交BC的延長線于點F,交CD于點G.
(1)求證:∠DAE=∠DCE;
(2)若∠F=30°,DG=2,求CG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是長春新地標一一摩天活力城樓頂上的摩天輪,被譽為“長春眼”,如圖②是其正面的平面圖.已知摩天活力城樓頂AD距地面BC為34米,摩天輪⊙O與樓頂AD近似相切,切點為G.測得∠OEF=∠OFE=67°,EF=27.54米,求摩天輪的最高點到地面BC的距離.(結果精確到0.1米)(參考數(shù)據(jù):sin67°=0.92,cos67°0.39,tan67°=2.36)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與軸交于點和點,與軸交于點,且滿足,若對稱軸在軸的右側(cè).
(1)求拋物線的解析式.
(2)如圖,若點為線段上的一動點(不與重合),分別以、為斜邊,在直線的同側(cè)作等腰直角三角形和,試確定面積最大時點的坐標.
(3)若,是拋物線上的兩點,當,時,均有,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與坐標軸交于A,B兩點,與反比例函數(shù)y=的圖象交于M,N兩點,過點M作MC⊥y軸于點C,且CM=1,過點N作ND⊥x軸于點D,且DN=1.已知點P是x軸(除原點O外)上一點.
(1)直接寫出M、N的坐標及k的值;
(2)將線段CP繞點P按順時針或逆時針旋轉(zhuǎn)90°得到線段PQ,當點P滑動時,點Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點Q的坐標;如果不能,請說明理由;
(3)當點P滑動時,是否存在反比例函數(shù)圖象(第一象限的一支)上的點S,使得以P、S、M、N四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點S的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com