【題目】 某學(xué)校為了了解八年級(jí)學(xué)生的課外閱讀情況,隨機(jī)抽查部分學(xué)生,并對(duì)其4月份的課外閱讀量進(jìn)行統(tǒng)計(jì)分析,繪制成如圖所示的統(tǒng)計(jì)圖(數(shù)據(jù)不完整).

根據(jù)圖示信息,解答下列問(wèn)題:

1)本次被抽查的學(xué)生共有______人;

2a=______b=______,將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)課外閱讀量的眾數(shù)是______本;

4)若規(guī)定:4月份閱讀3本以上(含3本)課外書籍者為完成閱讀任務(wù),據(jù)此估計(jì)該校八年級(jí)800名學(xué)生中,完成4月份課外閱讀任務(wù)的約有多少人?

【答案】(1)50;(2)a=32,b=28,圖詳見解析;(3)3;(4)576

【解析】

1)利用閱讀2本的人數(shù)及占比即可求出本次被抽查的學(xué)生總數(shù);

2)根據(jù)閱讀2本的人數(shù)除以被抽查的學(xué)生總數(shù)即可求解a,再求出閱讀4本的人數(shù)除以被抽查的學(xué)生總數(shù)即可求解b

33本的人數(shù)做多,所以課外閱讀量的眾數(shù)是3本;

4)先求出被抽查的學(xué)生中完成4月份課外閱讀任務(wù)的占比,再乘以該校八年級(jí)總學(xué)生即可求解.

解:(110÷20%=50(人),

故答案為50;

2=32%=a%,a=32,

閱讀4本的人數(shù):50-4-10-16-6=14(人)

=28%=b%b=28,

補(bǔ)全統(tǒng)計(jì)圖如下:

33本的人數(shù)做多,所以課外閱讀量的眾數(shù)是3本,

故答案為3;

4800×=576(人)

答:完成4月份課外閱讀任務(wù)的約有576人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問(wèn)卷調(diào)查的學(xué)生只能從以下六個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

種類

A

B

C

D

E

F

上學(xué)方式

電動(dòng)車

私家車

公共交通

自行車

步行

其他

某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計(jì)圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計(jì)圖

根據(jù)以上信息,回答下列問(wèn)題:

(1)參與本次問(wèn)卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.

(2)在扇形統(tǒng)計(jì)圖中,求E類對(duì)應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若將A、C、DE這四類上學(xué)方式視為綠色出行,請(qǐng)估計(jì)該校每天綠色出行的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2的正方形ABCD的頂點(diǎn)A、B在一個(gè)半徑為2的圓上,頂點(diǎn)C、D在該圓內(nèi).將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D第一次落在圓上時(shí),點(diǎn)C旋轉(zhuǎn)到C,則∠CAB__°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在線段CB的延長(zhǎng)線上,連接DEAB于點(diǎn)F,2CED=∠AED,點(diǎn)GDF的中點(diǎn)

1)求證:∠CED=∠DAG;

2)若AG4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出如下規(guī)定:對(duì)于平面直角坐標(biāo)系xOy中的圖形MN,給出如下定義:P為圖形M上任意一點(diǎn),QN上任一點(diǎn),如果P,Q兩點(diǎn)間的距離存在最小值時(shí),就稱該最小值為兩個(gè)圖形MN之間的“閉距離”;如果P,Q兩點(diǎn)間的距離存在最大值時(shí),就稱該最大值為兩個(gè)圖形MN之間的“開距離”.

請(qǐng)你在學(xué)習(xí),理解上述定義的基礎(chǔ)上,解決下面問(wèn)題:

在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣68),B(﹣6,﹣8),C6,﹣8),D6,8).

1)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出四邊形ABCD,線段AB和線段CD的“閉距離”為   ;“開距離”為   ;

2)設(shè)直線y=﹣x+bb0)與x軸,y軸分別交于點(diǎn)E,F,若線段EF與四邊形ABCD的“閉距離”是2,求它們的“開距離”;

3M的圓心為Mm,﹣6),半徑為1,若M與△ABC的“閉距離”等于1,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+ca、bc為常數(shù),a≠0)的衍生直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其衍生三角形.已知拋物線與其衍生直線交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

1)填空:該拋物線的衍生直線的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將ACMAM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若AMN為該拋物線的衍生三角形,求點(diǎn)N的坐標(biāo);

3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的衍生直線上,是否存在點(diǎn)F,使得以點(diǎn)AC、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線)的部分圖象如圖所示,與軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是,下列結(jié)論是:①;②;③方程有兩個(gè)不相等的實(shí)數(shù)根;④;⑤若點(diǎn)在該拋物線上,則,其中正確的個(gè)數(shù)有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天晚上,小穎由路燈A下的B處向正東走到C處時(shí),測(cè)得影子CD的長(zhǎng)為1米.當(dāng)她繼續(xù)向正東走到D處時(shí),測(cè)得此時(shí)影子DE的一端E到路燈A的仰角為45°.已知小穎的身高為1.5米,那么路燈AB的高度是多少米?(

A.4B.4.5C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營(yíng)中發(fā)現(xiàn)每輛車的月租金x()與每月租出的車輛數(shù)(y)有如下關(guān)系:

x

3000

3200

3500

4000

y

100

96

90

80

1)觀察表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.

2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含xx≥3000)的代數(shù)式填表:

租出的車輛數(shù)

未租出的車輛數(shù)

租出每輛車的月收益

所有未租出的車輛每月的維護(hù)費(fèi)

3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請(qǐng)求出公司的最大月收益是多少元.

查看答案和解析>>

同步練習(xí)冊(cè)答案