【題目】把下列各數(shù)分別填在相應(yīng)的括號內(nèi).
-,0,0.16,3, ,-, ,,-,-3.14
有理數(shù):{____________________________________________________};
無理數(shù):{____________________________________________________};
負(fù)實數(shù):{____________________________________________________}.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩艘輪船同時從港口O出發(fā),甲輪船以20海里/時的速度向南偏東45°方向航行,乙輪船向南偏西45°方向航行.已知它們離開港口O兩小時后,兩艘輪船相距50海里,求乙輪船平均每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠BMN與∠DNM的平分線相交于點G.
(1)完成下面的證明:
∵MG平分∠BMN
∴∠GMN=∠BMN
同理∠GNM=∠DNM.
∵AB∥CD ,
∴∠BMN+∠DNM=
∴∠GMN+∠GNM=
∵∠GMN+∠GNM+∠G=
∴∠G=
∴MG與NG的位置關(guān)系是
(2)把上面的題設(shè)和結(jié)論,用文字語言概括為一個命題: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸相交于A、B兩點,與y軸相交于點C(0,3).且點A的坐標(biāo)為(﹣1,0),點B的坐標(biāo)為(3,0),點P是拋物線上第一象限內(nèi)的一個點.
(1)求拋物線的函數(shù)表達(dá)式;
(2)連PO、PB,如果把△POB沿OB翻轉(zhuǎn),所得四邊形POP′B恰為菱形,那么在拋物線的對稱軸上是否存在點Q,使△QAB與△POB相似?若存在求出點Q的坐標(biāo);若不存在,說明理由;
(3)若(2)中點Q存在,指出△QAB與△POB是否位似?若位似,請直接寫出其位似中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB的中點,點E在AC上,點F在BC上,且AE=CF.
(1)求證:DE=DF,DE⊥DF;
(2)若AC=2,求四邊形DECF面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,點G是BC邊上的任意一點(不同于端點B、C),連接AG,過B、D兩點作BE⊥AG,DF⊥AG,垂足分為E、F.
(1)求證:△ABE≌△DAF;
(2)若△ADF的面積為1,試求|BE﹣DF|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A(2,5)在反比例函數(shù)y= 的圖象上.一次函數(shù)y=x+b的圖象過點A,且與反比例函數(shù)圖象的另一交點為B.
(1)求k和b的值;
(2)設(shè)反比例函數(shù)值為y1 , 一次函數(shù)值為y2 , 求y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB=AC,D 是直線 BC 上一點(不與點 B、C 重合),以 AD 為一邊在 AD的右側(cè)作△ADE,AD=AE,∠DAE=∠BAC,連接 CE.
(1)如圖 1,當(dāng)點 D 在線段 BC 上時,求證:△ABD≌△ACE;
(2)如圖 2,當(dāng)點 D 在線段 BC 上時,如果∠BAC=90°,求∠BCE 的度數(shù);
(3)如圖 3,若∠BAC=α,∠BCE=β.點 D 在線段 CB 的延長線上時,則α、β之間有怎樣 的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com