【題目】某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形:
如圖1,已知:在中,,,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,直線(xiàn)m,直線(xiàn)m,垂足分別為點(diǎn)D、試猜想DE、BD、CE有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出;
組員小穎想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖2,將中的條件改為:在中,,D、A、E三點(diǎn)都在直線(xiàn)m上,并且有其中為任意銳角或鈍角如果成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來(lái)解決問(wèn)題:
如圖3,F是角平分線(xiàn)上的一點(diǎn),且和均為等邊三角形,D、E分別是直線(xiàn)m上A點(diǎn)左右兩側(cè)的動(dòng)點(diǎn)、E、A互不重合,在運(yùn)動(dòng)過(guò)程中線(xiàn)段DE的長(zhǎng)度始終為n,連接BD、CE,若,試判斷的形狀,并說(shuō)明理由.
【答案】,理由見(jiàn)解析;結(jié)論成立;理由見(jiàn)解析;為等邊三角形,理由見(jiàn)解析.
【解析】
(1)先利用同角的余角相等,判斷出,進(jìn)而判斷△ADB≌△CEA,得出BD=AE,AD=CE,即可得出結(jié)論;
(2)先利用三角形內(nèi)角和及平角的性質(zhì),判斷出,進(jìn)而判斷出△ADB≌△CEA,得出BD=AE,AD=CE,即可得出結(jié)論;
(3)由(2)得,△ADB≌△CEA,得出BD=AE,再判斷出△FBD≌△FAE,得出,進(jìn)而得出 ,即可得出結(jié)論.
,
理由:,
,
,,
,
,
,
在和中,,
≌,
,,
,
故答案為:;
解:結(jié)論成立;
理由如下:,,,
,
在和中,,
≌,
,,
;
為等邊三角形,
理由:由得,≌,
,,
,即,
在和中,,
≌,
,,
,
為等邊三角形.
故答案為:(1)DE=BD+CE,理由見(jiàn)解析;(2)結(jié)論DE=BD+CE成立;理由見(jiàn)解析;(3)△DFE為等邊三角形,理由見(jiàn)解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線(xiàn)OM,ON上運(yùn)動(dòng),BE平分∠ABN,BE的反向延長(zhǎng)線(xiàn)與∠BAO的平分線(xiàn)交于點(diǎn)C.
(1)當(dāng)點(diǎn)A,B移動(dòng)后,∠BAO=45°時(shí),∠C=________;
(2)當(dāng)點(diǎn)A,B移動(dòng)后,∠BAO=60°時(shí),∠C=________;
(3)由(1)(2)猜想∠C是否隨點(diǎn)A,B的移動(dòng)而發(fā)生變化,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)建設(shè)者三年的努力,貫穿四川的“遂內(nèi)高速”正式通車(chē),已知原來(lái)從遂寧到內(nèi)江的公路長(zhǎng)150km,高速公路路程比公路縮短30km,一輛小車(chē)從遂寧到內(nèi)江走高速公路的平均速度可以提高到原來(lái)的1.5倍,用時(shí)比原來(lái)減少1小時(shí),求小車(chē)原來(lái)的平均速度和走高速的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合與實(shí)踐課上,同學(xué)們以“一個(gè)含的直角三角尺和兩條平行線(xiàn)”為背景開(kāi)展數(shù)學(xué)活動(dòng),如圖,已知兩直線(xiàn)且和直角三角形,,,.
操作發(fā)現(xiàn):
(1)在如圖1中,,求的度數(shù);
(2)如圖2,創(chuàng)新小組的同學(xué)把直線(xiàn)向上平移,并把的位置改變,發(fā)現(xiàn),說(shuō)明理由;
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,將如圖中的圖形繼續(xù)變化得到如圖,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程ax2﹣3x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根都在﹣1和0之間(不包括﹣1和0),則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù) 的圖象經(jīng)過(guò)點(diǎn)A(1,3).
(1)試確定此反比例函數(shù)的解析式;
(2)當(dāng)x=2時(shí),求y的值;
(3)當(dāng)自變量x從5增大到8時(shí),函數(shù)值y是怎樣變化的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明準(zhǔn)備測(cè)量一段水渠的深度,他把一根竹竿AB豎直插到水底,此時(shí)竹竿AB離岸邊點(diǎn)C處的距離米。竹竿高出水面的部分AD長(zhǎng)0.5米,如果把竹竿的頂端A拉向岸邊點(diǎn)C處,竿頂和岸邊的水面剛好相齊,則水渠的深度BD為( )
A. 2米B. 2.5米C. 2.25米D. 3米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC 中,AD⊥BC 于點(diǎn) D,BE 是∠ABC 的平分線(xiàn),若∠DAC=30°,∠BAC=80°,求:∠AOB 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A、B、C三點(diǎn)的坐標(biāo)分別為(﹣6,7)、(﹣3,0)、(0,3).
(1)畫(huà)出△ABC,并求△ABC的面積;
(2)在△ABC中,點(diǎn)C經(jīng)過(guò)平移后的對(duì)應(yīng)點(diǎn)為C′(5,4),將△ABC作同樣的平移得到△A′B′C′, 畫(huà)出平移后的△A′B′C′,并寫(xiě)出點(diǎn)A′,B′的坐標(biāo);
(3)已知點(diǎn)P(﹣3,m)為△ABC內(nèi)一點(diǎn),將點(diǎn)P向右平移4個(gè)單位后,再向下平移6個(gè)單位得到點(diǎn)Q(n,﹣3),則m= ,n= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com