【題目】不透明布袋內(nèi)裝有形狀、大小、質(zhì)地完全相同的4個小球,分別標有數(shù)字1,2,3,4.

(1)從布袋中隨機地取出一個小球,求小球上所標的數(shù)字不為2的概率;

(2)從布袋中隨機地取出一個小球,記錄小球上所標的數(shù)字為x,不將取出的小球放回布袋,再隨機地取出一個小球,記錄小球上所標的數(shù)字為y,這樣就確定點E的一個坐標為(x,y),求點E落在直線y=x+1上的概率.

【答案】(1);(2).

【解析】

(1)讓不是2的情況數(shù)除以總情況數(shù)即為小球上所標的數(shù)字不為2的概率;

(2)列舉出所有情況,看點E落在直線y=x+1上的情況數(shù)占所有情況數(shù)的多少即可.

(1)P=

(2)如圖,

滿足條件的點有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),

(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12個,

其中落在直線y=x+1上的有(1,2),(2,3),(3,4)三個,

P=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD中,以CD為邊作等邊三角形CDE,求∠AED的度數(shù).(畫出相應(yīng)的圖形并解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°DAB延長線上一點,點EBC邊上,且BE=BD,連結(jié)AE、DE、DC

①求證:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形OABC,點O為坐標原點,點Ay軸正半軸上,點Cx軸正半軸上,OA4,OC6,點EOC的中點,將△OAE沿AE翻折,使點O落在點O處,作直線CO',則直線CO'的解析式為( 。

A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形,建立如圖所示的平面直角坐標系,點C的坐標為(0,﹣1).

(1)在如圖的方格紙中把△ABC以點O為位似中心擴大,使放大前后的位似比為1:2,畫出△A1B1C1(△ABC與△A1B1C1在位似中心O點的兩側(cè),AB,C的對應(yīng)點分別是A1,B1,C1).

(2)利用方格紙標出△A1B1C1外接圓的圓心P,P點坐標是  ,⊙P的半徑=  .(保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與坐標軸交于A,B,C三點,點A的橫坐標為﹣1,過點C(0,3)的直線y=﹣x+3x軸交于點Q,點P是線段BC上的一個動點,PHOB于點H.若PB=5t,且0<t<1.

(1)確定b,c的值;

(2)寫出點B,Q,P的坐標(其中Q,P用含t的式子表示);

(3)依點P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=6,O是AB的中點,直線l經(jīng)過點O,1=120°,P是直線l上一點。當APB為直角三角形時,AP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,DBC邊的中點,EAB延長線上的一點,且BE=BD

1)求∠BAD∠BDE的度數(shù);

2)求證:AD=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家歐幾里得將幾何學(xué)建立在演繹推理之上,并從基本事實出發(fā),運用演繹推理的方法,證明了一個又一個幾何發(fā)現(xiàn)(定理),從而寫就了西方科學(xué)文獻中最有影響的經(jīng)典著作,這本著作是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案