拋物線y=5x2與直線y=kx+3的交點(diǎn)為(1,b),則b=____________,k=____________.

答案:
解析:

解析:拋物線y=5x2與直線y=kx+3的交點(diǎn)為(1,b),說(shuō)明(1,b)代入y=5x2和y=kx+3都成立,解得b=5,k=2.

答案:5 2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、拋物線y=ax2與直線y=-x交于(1,m),則m=
-1
;拋物線的解析式
y=-x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,AC兩點(diǎn)的坐標(biāo)分別為A(6,0),C(0,3),直線y=-
3
4
x+
9
2
與BC邊相交于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2)若上拋物線y=ax2+bx(a≠0)經(jīng)過(guò)A,D兩點(diǎn),試確定此拋物線的解析式;
(3)設(shè)(2)中的拋物線的對(duì)稱軸與直線AD交點(diǎn)M,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),以P、A、M為頂點(diǎn)的三角形與△ABD相似,求符合條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•錦州模擬)如圖,拋物線y=ax2+bx+c與x軸交于A(1,0)、B(3,0)兩點(diǎn).與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與直線BC交于點(diǎn)D
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使|BM-CM|的值最大,求出點(diǎn)M的坐標(biāo).
(3)平面直角坐標(biāo)系上有一點(diǎn)P(5,2),x軸上是否存在一點(diǎn)Q,使△PQD為直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)點(diǎn)E為直線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問(wèn)是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,直接寫(xiě)出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2-2ax+c與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且OC=3OA.點(diǎn)E為線段BC上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B,C重合),以E為頂點(diǎn)作∠OEF=45°,射線ET交線段OB于點(diǎn)F.
(1)求出此拋物線函數(shù)表達(dá)式,并直接寫(xiě)出直線BC的解析式;
(2)求證:∠BEF=∠COE;
(3)當(dāng)△EOF為等腰三角形時(shí),求此時(shí)點(diǎn)E的坐標(biāo);
(4)點(diǎn)P為拋物線的對(duì)稱軸與直線BC的交點(diǎn),點(diǎn)M在x軸上,點(diǎn)N在拋物線上,是否存在以點(diǎn)A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案