【題目】在如圖的菱形網(wǎng)格圖中,每個(gè)小菱形的邊長(zhǎng)均為個(gè)單位,且每個(gè)小菱形內(nèi)角中的銳角為60°.
(1)直接寫出的三個(gè)頂點(diǎn)的坐標(biāo);
(2)在圖中作出以點(diǎn)為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)60°后的圖形;
(3)根據(jù)(2),請(qǐng)直接寫出線段掃過的面積.
【答案】(1)A,B,C;(2)見解析;(3).
【解析】
(1)分別過點(diǎn)A,B,C作x軸的垂線,垂足分別為D,E,F,分別過點(diǎn)A,C作y軸的垂線,垂足分別為G,H,根據(jù)菱形的性質(zhì)以及矩形的判定與性質(zhì),分別求出各點(diǎn)的坐標(biāo)即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì),由對(duì)應(yīng)點(diǎn)與對(duì)應(yīng)中心的連線分別相等且夾角為60°分別找出各個(gè)對(duì)應(yīng)點(diǎn),順次連接即可;
(3)根據(jù)線段掃過的面積=扇形CPC1的面積-扇形APA1的面積求解即可.
解:(1)分別過點(diǎn)A,B,C作x軸的垂線,垂足分別為D,E,F,分別過點(diǎn)A,C作y軸的垂線,垂足分別為G,H,設(shè)GA的延長(zhǎng)線與BE相交于點(diǎn)M,由題意得,
AG=1,AO=2,AB=3,BC=2,BH=3,∠AOD=∠BAM=60°,
由作圖易知四邊形OGAD為矩形,四邊形MAED為矩形,四邊形BEFC為矩形,
∴OD=AG=1,EF=BC=2,AM=DE,AD=ME.
在Rt△AOD中,AD=AO·sin∠AOD=2×sin60°=2×,∴點(diǎn)A的坐標(biāo)為(1,);
在Rt△ABM中,BM=AB·sin∠BAM=3×sin60°=3×,AM=AB=,
∴OE=OD+DE=0D+AM=1+=,BE=BM+ME=BM+AD=,∴點(diǎn)B的坐標(biāo)為;
OF=OD+DE+EF=OD+AM+BC=1++2=,CF=BE=,∴點(diǎn)C的坐標(biāo)為,
故點(diǎn)A,B,C三點(diǎn)的坐標(biāo)分別為A,B,C.
(2)如圖所示:
(3)根據(jù)題意可得,
線段掃過的面積=扇形CPC1的面積-扇形APA1的面積=.
故所求面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測(cè)得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF=70°,求河流的寬度(結(jié)果精確到個(gè)位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.
(1)填空:n的值為 ,k的值為 ;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)觀察反比函數(shù)y=的圖象,當(dāng)y≥-2時(shí),請(qǐng)直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,經(jīng)過點(diǎn)C且與邊AB相切的動(dòng)圓與CB,CA分別相交于點(diǎn)E,F,則線段EF長(zhǎng)度的最小值是( )
A.B.4.75C.5D.4.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(3)當(dāng)△ADE是等腰三角形時(shí),求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸相交于點(diǎn),與軸相交于,拋物線經(jīng)過兩點(diǎn),與軸另一交點(diǎn)為.
(1)求拋物線的解析式;
(2)如圖1,過點(diǎn)作軸,交拋物線于另一點(diǎn),點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng)(點(diǎn)不與點(diǎn)和點(diǎn)重合),設(shè)運(yùn)動(dòng)時(shí)間為秒,過點(diǎn)作軸交于點(diǎn),作于點(diǎn),交軸右側(cè)的拋物線與點(diǎn),連接,當(dāng)時(shí),求的值;
(3)如圖2,正方形,邊在軸上,點(diǎn)與點(diǎn)重合,邊長(zhǎng)為個(gè)單位長(zhǎng)度,將正方形沿射線方向,以每秒個(gè)單位長(zhǎng)度的速度平移,時(shí)間為秒,在平移過程中,請(qǐng)寫出正方形的邊恰好與拋物線有兩個(gè)交點(diǎn)時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙0的直徑,AB=10,CD是⊙0的切線,C為切點(diǎn),交直線AB于E,AD⊥CD于D,AD=2CD.
(1)求證:∠CAB=∠CAD;
(2)求CD的長(zhǎng);
(3)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,是的直徑,是的弦,,點(diǎn)是半徑上一動(dòng)點(diǎn),過點(diǎn)作的垂線分別交于點(diǎn),交過點(diǎn)的的切線于點(diǎn),交直線于點(diǎn).
(1)求證:;
(2)如圖2,若是的中點(diǎn),,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=x+4.如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B.C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.
(1)寫出點(diǎn)M(2,3)任意兩條特征線___________________
(2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式________________________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com