【題目】(情境)某課外興趣小組在一次折紙活動課中.折疊一張帶有條格的長方形的紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應(yīng)條格線所在的直線的交點,用平滑的曲線順次連結(jié)各交點,得到一條曲線.
圖1 圖2 圖3
(探索)(1)如圖2,在平面直角坐標系xOy中,將矩形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB邊放在y軸的正半軸上,AB=m,AD=n,(m≤n).將紙片折疊,使點B落在邊AD上的點E處,過點E作EQ⊥BC于點Q,折痕MN所在直線與直線EQ相交于點P,連結(jié)OP.求證:四邊形OMEP是菱形;
(歸納)(2)設(shè)點P坐標是(x,y),求y與x的函數(shù)關(guān)系式(用含m的代數(shù)式表示).
(運用)(3)將矩形紙片ABCD如圖3放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在點K,使得△KCF的面積是△KOC面積的?若存在,寫出點K的坐標;若不存在,請說明理由.
【答案】(1)見解析 (2)y= (3)點K(2+2,)
【解析】(1)、如果四邊形的四邊相等,那么這個四邊形是菱形;(2)、根據(jù)P點的坐標,可表示出E點的坐標,從而可知道OP的長,用勾股定理表示出解析式;(3)、首先畫出圖形,作KG⊥DC于G,KH⊥OC于H.設(shè)K(x,y),根據(jù)面積的關(guān)系得出y=,將點K的坐標代入二次函數(shù)解析式,從而得出x的值,得出點K的坐標.
(1)、證明:如圖3,由題意知:OM=ME,∠OMN=∠EMN, ∵OM∥EP,∴∠OMN=∠MPE.
∴∠EMN=∠MPE. ∴ME=EP.∴OM=EP. ∴四邊形OMEP是平行四邊形.
又∵ME=EP,∴四邊形OMEP是菱形;
(2)、解:∵四邊形OMEP是菱形, ∴OP=PE,∴OP2=PE2, ∵EQ=OA=m,PQ=y,
∴PE=m﹣y.∴PE2=(m﹣y)2=m2﹣2my+y2.
∵OP2=x2+y2,PE2=m2﹣2my+y2, ∴x2+y2=m2﹣2my+y2. ∴y=;
(3)、解:如圖3,假設(shè)折疊曲線上存在點K滿足條件.
當m=8時,y=﹣x2+4. 作KG⊥DC于G,KH⊥OC于H.設(shè)K(x,y),
則KG=12﹣x,KH=y. 當x=12時,y=﹣5. ∴F(12,﹣5), ∴CF=5.
∴S△KCF=CF×KG=×5×(12﹣x), S△KOC=CO×KH=×12y, ∵S△KCF= S△KOC,
∴0.5×5·(12-x)=××12·y ∴y=. ∴K(x,).
∵點K在y=﹣x2+4上, ∴=﹣x2+4. 化簡得:x2﹣4x﹣16=0,
解得:x1=2+2,x2=2﹣2(舍去), 當x1=2+2時,y=,
∴存在點K(2+2,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙牌中,AB=8cm,BC=6cm,AC=5cm,沿著過△ABC的頂點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,則△AED周長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是某種蠟燭在燃燒過程中高度與時間之間關(guān)系的圖像,由圖像解答下列問題:
(1)此蠟燭燃燒1小時后,高度為 cm;經(jīng)過 小時燃燒完畢;
(2)求這個蠟燭在燃燒過程中高度與時間之間關(guān)系的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上的點表示的數(shù)為,點表示的數(shù)為,點到點、點的距離相等,動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為(大于秒.
(1)點表示的數(shù)是______.
(2)求當等于多少秒時,點到達點處?
(3)點表示的數(shù)是______(用含字母的式子表示)
(4)求當等于多少秒時,、之間的距離為個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水泥廠的倉庫天內(nèi)進出庫的噸數(shù)記錄如下(+表示進庫,-表示出庫):
(1)經(jīng)過這天,水泥倉庫里的水泥是增多了還是減少了?增多或減少了多少噸?
(2)經(jīng)過這天,水泥倉庫管理員結(jié)算時發(fā)現(xiàn)還庫存有噸水泥,那么天前水泥倉庫里存有水泥多少噸?
(3)如果進倉庫的水泥每噸運費為元,出倉庫的水泥每噸運費為元,那么這天共要付多少元運費?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x+1交x軸于點A,交y軸于點A1,A2,A3,…在直線l上,點B1,B2,B3…在x軸的正半軸上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn,頂點Bn的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰中,,點A、B分別在坐標軸上.
(1)如圖1,若,,求C點的坐標;
(2)如圖2,CD垂直x軸于D點,判斷CD、OA、OD的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,若點A的坐標為,點B在y軸的正半軸上運動時,分別以OB,AB為邊在第一,第二象限作等腰,等腰,連接EF交y軸于P點,當點B在y軸上移動時,PB的長度是否變化?如果不變求出PB值,如果變化求PB的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.
(1)求3A﹣(4A﹣2B)的值;
(2)當x取任意數(shù)值,A﹣2B的值是一個定值時,求(a+A)﹣(2b+B)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,我市某中學(xué)決定根據(jù)學(xué)生的興趣愛好組建課外興趣小組,因此學(xué)校隨機抽取了部分同學(xué)的興趣愛好進行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)學(xué)校這次調(diào)查共抽取了 名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“戲曲”所在扇形的圓心角度數(shù)為 ;
(4)設(shè)該校共有學(xué)生2000名,請你估計該校有多少名學(xué)生喜歡書法?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com