【題目】如圖,以點O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,點P為切點,AB=12 ,OP=6,則劣弧AB的長為

【答案】8π
【解析】解:連接OA、OB,
∵AB為小⊙O的切線,
∴OP⊥AB,
∴AP=BP= AB=6
= ,
∴∠AOP=60°,
∴∠AOB=120°,∠OAP=30°,
∴OA=2OP=12,
∴劣弧AB的長為: = =8π.
所以答案是:8π.
【考點精析】關(guān)于本題考查的切線的性質(zhì)定理和弧長計算公式,需要了解切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知等腰三角形的一邊長等于8cm,一邊長等于9cm,求它的周長;

(2)等腰三角形的一邊長等于6cm,周長等于28cm,求其他兩邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別作其內(nèi)角∠ACB與外角∠DAC的角平分線,且兩條角平分線所在的直線交于點E

(1)填空:①如圖1,若∠B=60°,則∠E=   ;

②如圖2,若∠B=90°,則∠E=   ;

(2)如圖3,若∠B=α,求∠E的度數(shù);

(3)如圖4,仿照(2)中的方法,在(2)的條件下分別作∠EAB與∠ECB的角平分線,且兩條角平分線交于點G,求∠G的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為a與b、對角線長為c的長方形紙片ABCD,繞點C順時針旋轉(zhuǎn)90°得到長方形FGCE,連接AF.通過用不同方法計算梯形ABEF的面積可驗證勾股定理,請你寫出驗證的過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.

(1)求證:△ACF∽△DAE;
(2)若SAOC= ,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙、丙三個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄.甲、乙、丙三個小組各項得分如表:

小組

研究報告

小組展示

答辯

91

80

78

81

74

85

79

83

90


(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果按照研究報告占40%,小組展示占30%,答辯占30%計算各小組的成績,哪個小組的成績最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了比較市場上甲、乙兩種電子鐘每日走時誤差的情況,從這兩種電子鐘中,各隨機抽取10臺進行測試,兩種電子鐘走時誤差的數(shù)據(jù)如下表(單位:秒):

編號

類型

甲種電子鐘

1

-3

-4

4

2

-2

2

-1

-1

2

乙種電子鐘

4

-3

-1

2

-2

1

-2

2

-2

1

(1) 計算甲、乙兩種電子鐘走時誤差的平均數(shù);

(2) 計算甲、乙兩種電子鐘走時誤差的方差;

(3) 根據(jù)經(jīng)驗,走時穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類型的電子鐘價格相同,請問:你買哪種電子鐘?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,AD=6,點M為AB上的一動點,將矩形ABCD沿某一直線對折,使點C與點M重合,該直線與AB(或BC)、CD(或DA)分別交于點P、Q

(1)用直尺和圓規(guī)在圖甲中畫出折痕所在直線(不要求寫畫法,但要求保留作圖痕跡)
(2)如果PQ與AB、CD都相交,試判斷△MPQ的形狀并證明你的結(jié)論;
(3)設(shè)AM=x,d為點M到直線PQ的距離,y=d2 ,
①求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
②當(dāng)直線PQ恰好通過點D時,求點M到直線PQ的距離.

查看答案和解析>>

同步練習(xí)冊答案