【題目】如圖,已知拋物線軸、軸分別相交于點A(-1,0)和B(0,3),其頂點為D.

(1)求這條拋物線的解析式;

(2)若拋物線與軸的另一個交點為E,求△ODE的面積;

(3)拋物線的對稱軸上是否存在點P使得△PAB的周長最短.若存在請求出點P的坐標(biāo),若不存在說明理由.

【答案】(1)y=﹣x2+2x+3;(2)S△ODE=6;(3)點P坐標(biāo)(1,2).

【解析】

(1)將A(-1,0)、B(0,3)分別代入y=-x2+bx+c,解方程組求得b、c的值,即可求得拋物線的解析式;(2)先求得點D、點E的坐標(biāo),再根據(jù)三角形的面積公式即可求解;(3)連接BE交直線x=1于點P,此時PA+PB的值最小,由此求得點P的坐標(biāo)即可.

(1)解:根據(jù)題意得,解得

拋物線解析式為y=﹣x2+2x+3

(2)解:當(dāng)y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則E(3,0);

拋物線y=﹣(x﹣1)2 + 4的頂點坐標(biāo)D(1,4),

∴SODE=×3×4=6;

(3)連接BE交直線x=1于點P,如圖,

由對稱性知PA=PE,

∴PA+PB=PE+PB=BE,

此時PA+PB的值最小,

求得直線BE的解析式為 y=﹣x+3

當(dāng)x=1時,y=﹣x+3=3,

P坐標(biāo)(1,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,投影線方向如圖所示,點C在斜邊AB上的正投影為點D,

(1)試寫出邊AC、BCAB上的投影;

(2)試探究線段AC、ABAD之間的關(guān)系;

(3)線段BC、ABBD之間也有類似的關(guān)系嗎?請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,過點C的直線MN∥AB,D為AB上一點,過點D作DE⊥BC,交直線MN于點E,垂足為F,連接CD,BE.

(1)當(dāng)點D是AB的中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(2)在(1)的條件下,當(dāng)∠A等于多少度時,四邊形BECD是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸正半軸、y軸的負(fù)半軸上,二次函數(shù)y(xh)2+k的圖象經(jīng)過B、C兩點.

(1)求該二次函數(shù)的頂點坐標(biāo);

(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時x的取值范圍;

(3)設(shè)m,且Amy1),Bm+1,y2)兩點都在該函數(shù)圖象上,試比較y1y2的大小,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊AOB不動,讓扇形COD繞點O逆時針旋轉(zhuǎn),線段AC、BD也隨之變化,設(shè)旋轉(zhuǎn)角為α.(0<α≤360°)

(1)當(dāng)OCAB時,旋轉(zhuǎn)角α=   度;

發(fā)現(xiàn):(2)線段ACBD有何數(shù)量關(guān)系,請僅就圖2給出證明.

應(yīng)用:(3)當(dāng)A、C、D三點共線時,求BD的長.

拓展:(4)P是線段AB上任意一點,在扇形COD的旋轉(zhuǎn)過程中,請直接寫出線段PC的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)yb0)與二次函數(shù)yax2+bxa0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個信封,每個信封內(nèi)各裝有四張完全相同的卡片,其中一個信封內(nèi)的四張卡片上分別寫有1,2,3,4四個數(shù),另一個信封內(nèi)的四張卡片上分別寫有5,6,7,8四個數(shù).甲,乙兩人商定了一個游戲,規(guī)則是:從這兩個信封中各隨機抽取一張卡片,然后把卡片上的兩個數(shù)相乘,如果得到的積大于16,則甲獲勝,否則乙獲勝.

(1)請你通過列表(或畫樹狀圖)計算甲獲勝的概率;

(2)你認(rèn)為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BC是⊙O的直徑,點DBC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求證:直線AD是⊙O的切線;

(2)若AEBC,垂足為M,O的半徑為4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是邊長為1的正方形,OCx軸正半軸的夾角為15°,點B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。

A. B. C. ﹣2 D.

查看答案和解析>>

同步練習(xí)冊答案