【題目】如圖,已知等腰直角三角形ABC,∠ACB=90°D是斜邊AB的中點(diǎn),且AC=BC=16分米,以點(diǎn)B為圓心,BD為半徑畫弧,交BC于點(diǎn)F,以點(diǎn)C為圓心,CD為半徑畫弧,分別交AB、BC于點(diǎn)E、G.求陰影部分的面積.

【答案】陰影部分的面積是64平方分米.

【解析】

根據(jù)題意和圖形可以得到陰影部分的面積是△ABC的面積減去扇形BFD的面積和右上角空白部分的面積,由題目中的數(shù)據(jù)可以求出各部分的面積,從而可以解答本題.

解:等腰直角三角形ABC,∠ACB=90°,D是斜邊AB的中點(diǎn),且AC=BC=16分米,

AB=16分米,∠DBF=45°,

BF=CD=8分米,

∴陰影部分的面積是:[]=64平方分米,

故陰影部分的面積是64平方分米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c過點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對稱軸是x=﹣3,請解答下列問題:

(1)求拋物線的解析式.

(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=﹣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列各組條件,△ABC與△A1B1C1相似的有( )

①∠A45°AB12,AC15,∠A145°,A1B116A1C120

AB12,BC15AC24,A1B120A1C140,B1C125

③∠B=∠B175°,∠C50°,∠A155°

④∠C=∠C190°,AB10,AC6A1B115,A1C19

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10,點(diǎn)D是邊上一動(dòng)點(diǎn)(不與B,C重合),∠ADE=B=aDEAC于點(diǎn)E,且cosa=,則線段CE的最大值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.

(1)請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一位籃球運(yùn)動(dòng)員跳起投籃,球沿拋物線y=x2+3.5運(yùn)行,然后準(zhǔn)確落入籃框內(nèi).已知籃框的中心離地面的距離為3.05米.

(1)球在空中運(yùn)行的最大高度為多少米?

(2)如果該運(yùn)動(dòng)員跳投時(shí),球出手離地面的高度為2.25米,請問他距離籃框中心的水平距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,DAB上一點(diǎn),且AC2=ABAD,BC2=BABD,求證:CDAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù)y(k≠0),下列說法不正確的是(  )

A. 它的圖象分布在第一、三象限 B. 點(diǎn)(k,k)在它的圖象上

C. 它的圖象關(guān)于原點(diǎn)對稱 D. 在每個(gè)象限內(nèi)yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A與點(diǎn)B在反比例函數(shù)y(x0)的圖象上,A點(diǎn)的縱坐標(biāo)為2,BB′AA′均垂直于x軸,B′,A′是垂足.

(1)A點(diǎn)的坐標(biāo);

(2)BOB′的面積;

(3)B點(diǎn)的橫坐標(biāo)為2,求OAB的面積.

查看答案和解析>>

同步練習(xí)冊答案