閱讀理解
拋物線(xiàn)y=x2上任意一點(diǎn)到點(diǎn)(0,1)的距離與到直線(xiàn)y=﹣1的距離相等,你可以利用這一性質(zhì)解決問(wèn)題.
問(wèn)題解決
如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=kx+1與y軸交于C點(diǎn),與函數(shù)y=x2的圖象交于A,B兩點(diǎn),分別過(guò)A,B兩點(diǎn)作直線(xiàn)y=﹣1的垂線(xiàn),交于E,F(xiàn)兩點(diǎn).
(1)寫(xiě)出點(diǎn)C的坐標(biāo),并說(shuō)明∠ECF=90°;
(2)在△PEF中,M為EF中點(diǎn),P為動(dòng)點(diǎn).
①求證:PE2+PF2=2(PM2+EM2);
②已知PE=PF=3,以EF為一條對(duì)角線(xiàn)作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.
解:(1)當(dāng)x=0時(shí),y=k•0+1=1,
則點(diǎn)C的坐標(biāo)為(0,1).
根據(jù)題意可得:AC=AE,
∴∠AEC=∠ACE.
∵AE⊥EF,CO⊥EF,
∴AE∥CO,
∴∠AEC=∠OCE,
∴∠ACE=∠OCE.
同理可得:∠OCF=∠BCF.
∵∠ACE+∠OCE+∠OCF+∠BCF=180°,
∴2∠OCE+2∠OCF=180°,
∴∠OCE+∠OCF=90°,即∠ECF=90°;
(2)①過(guò)點(diǎn)P作PH⊥EF于H,
Ⅰ.若點(diǎn)H在線(xiàn)段EF上,如圖2①.
∵M(jìn)為EF中點(diǎn),
∴EM=FM=EF.
根據(jù)勾股定理可得:
PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2
=2PH2+EH2+HF2﹣2(PH2+MH2)
=EH2﹣MH2+HF2﹣MH2
=(EH+MH)(EH﹣MH)+(HF+MH)(HF﹣MH)
=EM(EH+MH)+MF(HF﹣MH)
=EM(EH+MH)+EM(HF﹣MH)
=EM(EH+MH+HF﹣MH)
=EM•EF=2EM2,
∴PE2+PF2=2(PM2+EM2);
Ⅱ.若點(diǎn)H在線(xiàn)段EF的延長(zhǎng)線(xiàn)(或反向延長(zhǎng)線(xiàn))上,如圖2②.
同理可得:PE2+PF2=2(PM2+EM2).
綜上所述:當(dāng)點(diǎn)H在直線(xiàn)EF上時(shí),都有PE2+PF2=2(PM2+EM2);
②連接CD、PM,如圖3.
∵∠ECF=90°,
∴▱CEDF是矩形,
∵M(jìn)是EF的中點(diǎn),
∴M是CD的中點(diǎn),且MC=EM.
由①中的結(jié)論可得:
在△PEF中,有PE2+PF2=2(PM2+EM2),
在△PCD中,有PC2+PD2=2(PM2+CM2).
∵M(jìn)C=EM,
∴PC2+PD2=PE2+PF2.
∵PE=PF=3,
∴PC2+PD2=18.
∵1<PD<2,
∴1<PD2<4,
∴1<18﹣PC2<4,
∴14<PC2<17.
∵PC>0,
∴<PC<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
現(xiàn)有甲、乙兩個(gè)合唱隊(duì)隊(duì)員的平均身高為170cm,方程分別是S甲2、S乙2,且S甲2>S乙2,則兩個(gè)隊(duì)的隊(duì)員的身高較整齊的是( 。
| A. | 甲隊(duì) | B. | 乙隊(duì) | C. | 兩隊(duì)一樣整齊 | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為弘揚(yáng)“東亞文化”,某單位開(kāi)展了“東亞文化之都”演講比賽,在安排1位女選手和3位男選手的出場(chǎng)順序時(shí),采用隨機(jī)抽簽方式.
(1)請(qǐng)直接寫(xiě)出第一位出場(chǎng)是女選手的概率;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法表示第一、二位出場(chǎng)選手的所有等可能結(jié)果,并求出他們都是男選手的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn),如果函數(shù)的圖象恰好通過(guò)個(gè)整點(diǎn),則稱(chēng)函數(shù)為階整點(diǎn)函數(shù).有下列函數(shù):
①; ② ③ ④,
其中是一階整點(diǎn)函數(shù)有( ) 個(gè)
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com