將一個(gè)斜邊長(zhǎng)為的一個(gè)等腰直角三角形紙片(如圖1),沿它的對(duì)稱軸折疊1次后得到另一個(gè)等腰直角三角形(如圖2),再將圖2的等腰直角三角形沿它的對(duì)稱軸折疊后得到又一個(gè)等腰直角三角形(如圖3),若連續(xù)將圖1的等腰直角三角形折疊次后所得到的等腰直角三角形(如圖n+1)的斜邊長(zhǎng)為( * ).
A.B.C.D.
C
第一次折疊后的斜邊長(zhǎng)為1,第二次折疊后的斜邊長(zhǎng)為,第三次折疊后的斜邊長(zhǎng)為,即,以此類推,折疊次后所得到的等腰直角三角形的斜邊長(zhǎng)為
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(0, -1),
小題1:寫出A、B兩點(diǎn)的坐標(biāo);
小題2:畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1 ;
小題3:畫出△ABC繞點(diǎn)C旋轉(zhuǎn)180°后得到的△A2B2C2。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四個(gè)多邊形:①等邊三角形;②正方形;③正五邊形;④正六邊形.其中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( ▲ )
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖形中,即是中心對(duì)稱圖形又是軸對(duì)稱圖形的是………………………………………(▲)
A.等邊三角形B.平行四邊形C.梯形D.矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

取一副三角板按圖①拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A依順時(shí)針?lè)较蛐D(zhuǎn)一個(gè)大小為α的角(0°<α≤45°得到⊿ABC/,如圖②所示。試問(wèn):
小題1:當(dāng)α為多少度時(shí),能使得圖②中AB∥CD?
小題2:當(dāng)旋轉(zhuǎn)至圖③位置,此時(shí)α又為多少度?圖③中你能找出哪幾對(duì)相似三角形,并求其中一對(duì)的相似比。
小題3:連結(jié)BD,當(dāng)0°<α≤45°時(shí),探尋∠DBC/+∠CAC/+∠BDC值的大小變化情況,并給出你的證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面的圖形既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是(★)
A.正六邊形B.平行四邊形C.正五邊形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在Rt△ABC中,AB=BC=5,∠B=90°,將一塊等腰直角三角板的直角頂點(diǎn)放在斜邊AC的中點(diǎn)O處,將三角板繞點(diǎn)O旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC或其延長(zhǎng)線于E,F(xiàn)兩點(diǎn),如圖①與②是旋轉(zhuǎn)三角板所得圖形的兩種情況.
小題1:三角板繞點(diǎn)O旋轉(zhuǎn),△OFC是否能成為等腰直角三角形?若能,指出所有情況(即  
給出△OFC是等腰直角三角形時(shí)BF的長(zhǎng));若不能,請(qǐng)說(shuō)明理由;
小題2:三角板繞點(diǎn)O旋轉(zhuǎn),線段OE和OF之間有什么數(shù)量關(guān)系?用圖①或②加以證明;
小題3:若將三角板的直角頂點(diǎn)放在斜邊上的點(diǎn)P處(如圖③),當(dāng)AP:AC=1:4時(shí),PE和          
PF有怎樣的數(shù)量關(guān)系?證明你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將△ABCAC的中點(diǎn)O旋轉(zhuǎn)1800,得      四邊形,在圖中畫出,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在下面所示的方格紙中,畫出將圖中△ABC向右平移4格后的△A、B、C、,然后再畫出△A、B、C、向下平移3格后的△A"B"C"(6分)

查看答案和解析>>

同步練習(xí)冊(cè)答案