【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④S△ABC=4S△ADF.其中正確的有___________.
【答案】①②③④
【解析】試題解析:∵在△ABC中,AD和BE是高,
∴∠ADB=∠AEB=∠CEB=90°,
∵點F是AB的中點,
∴FD=AB,
∵∠ABE=45°,
∴△ABE是等腰直角三角形,
∴AE=BE,
∵點F是AB的中點,
∴FE=AB,
∴FD=FE,①正確;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中,
,
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,②正確;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD~△BCE,
∴,即BCAD=ABBE,
∵AE2=ABAE=ABBE,BCAD=ACBE=ABBE,
∴BCAD=AE2;③正確;
∵F是AB的中點,BD=CD,
∴S△ABC=2S△ABD=4S△ADF,④正確.
故填①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意解答:(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D.
(2)閱讀下面的內(nèi)容,并解決后面的問題: 如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù).
解:∵AP、CP分別平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結(jié)論得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數(shù),并說明理由.
②在圖4中,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.
③在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
圖1 圖2 圖3
(1)探究一:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的角之間的關(guān)系
已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,
試探究∠P與∠A的數(shù)量關(guān)系,并說明理由.
(2)探究二:四邊形的兩個個內(nèi)角與另兩個內(nèi)角的平分線所夾的角之間的關(guān)系
已知:如圖2,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,
試探究∠P與∠A+∠B的數(shù)量關(guān)系,并說明理由.
(3)探究三:六邊形的四個內(nèi)角與另兩個內(nèi)角的平分線所夾的角之間的關(guān)系
已知:如圖3,在六邊形ABCDEF中,DP、CP分別平分∠EDC和∠BCD,
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系:__ __ __.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某教研部門為了了解在校初中生閱讀教科書的現(xiàn)狀,隨機抽取某校部分初中學(xué)生進行了調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計表,請根據(jù)圖表中的信息解答下列問題:
某校初中生閱讀教科書情況統(tǒng)計圖表
類別 | 人數(shù) | 占總?cè)藬?shù)比例 |
重視 | a | b |
一般 | 57 | 0.285 |
不重視 | c | 0.36 |
說不清楚 | 9 | 0.045 |
(1)求樣本容量及表格中a,b,c的值,并補全統(tǒng)計圖;
(2)若該校共有初中生2500名,請估計該校“重視閱讀教科書”的初中人數(shù);
(3)①根據(jù)上面的統(tǒng)計結(jié)果,談?wù)勀銓υ撔3踔猩喿x教科書的現(xiàn)狀的看法及建議;
②如果要了解全省初中生閱讀教科書的情況,你認為應(yīng)該如何進行抽樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校在休息天用藥薰消毒法對教室進行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中含藥量y(毫克)與時間x(分鐘)成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與x之間的兩個函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)據(jù)測定,當空氣中每立方米的含藥量降低到0.45毫克以下時,學(xué)生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能進入教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠江流域某江段江水流向經(jīng)過B、C、D三點拐彎后與原來相同,如圖,若∠ABC=120°,∠BCD=80°,則∠CDE=__________度.
(第22題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射線BC上的動點(點E與點B不重合),M是線段DE的中點,連結(jié)BD,交線段AM于點N,如果以A,N,D為頂點的三角形與△BME相似,則線段BE的長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是線段AB上一點,△ACD和△BCE都是等邊三角形,連結(jié)AE,BD,設(shè)AE交CD于點F.
(1)求證:△ACE≌△DCB;
(2)求證:△ADF∽△BAD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com