閱讀下面的文字,解答問(wèn)題:
大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理的,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d4/6/vxbur1.png" style="vertical-align:middle;" />的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,所得的差就是小數(shù)部分.
又例如:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ea/a/jsa7x.png" style="vertical-align:middle;" />,即,
所以的整數(shù)部分為2,小數(shù)部分為.
請(qǐng)解答下列問(wèn)題:
(1) 如果,其中是整數(shù),且,那么=        , =        ;
(2) 最接近的兩個(gè)整數(shù)是     、       ,將這兩個(gè)整數(shù)作為直角三角形的兩條邊,請(qǐng)你計(jì)算第三邊的長(zhǎng)度.

(1) =5,=(2)3、4 (3)第三邊的長(zhǎng)為 

解析試題分析:解:(1) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/3/1zqcd4.png" style="vertical-align:middle;" />,而,b的小數(shù)部分也就是b,就是,代入,得出=5          
(2) 兩個(gè)整數(shù)為3、4;                
∵3、 4是直角三角形的兩邊
∴分兩種情況
13、4均是直角邊,則第三邊是斜邊,
第三邊長(zhǎng)為:           
23是直角邊,4是斜邊,則第三邊是直角邊,
第三邊長(zhǎng)為:
綜上,第三邊的長(zhǎng)為                  
考點(diǎn):勾股定理;估算無(wú)理數(shù)的大小
點(diǎn)評(píng):本題屬于基礎(chǔ)題目,考查了勾股定理在直角三角形中的運(yùn)用,無(wú)理數(shù)大小的估算

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的文字,解答問(wèn)題:
大家知道
2
是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用
2
-1
來(lái)表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理的,因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
2
的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,所得的差就是小數(shù)部分.
又例如:因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
4
7
9
,即2<
7
<3
,
所以
7
的整數(shù)部分為2,小數(shù)部分為(
7
-2)

請(qǐng)解答:
(1) 如果
13
的整數(shù)部分為a,那么a=
 
.如果3+
3
=b+c
,其中b是整數(shù),且0<c<1,那么b=
 
,c=
 

(2) 將(1)中的a、b作為直角三角形的兩條直角邊,請(qǐng)你計(jì)算第三邊的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的文字,解答問(wèn)題:
題目:已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)A(0,a),B(1,-2)兩點(diǎn),求證:這個(gè)二次函數(shù)圖象的對(duì)稱軸是直線x=2.
題目中有一段被墨水污染了而無(wú)法辨認(rèn)的文字.
(1)根據(jù)現(xiàn)有的信息,你能否求出題目中二次函數(shù)的解析式?若能,寫(xiě)出解題過(guò)程;若不能,請(qǐng)說(shuō)明理由;
(2)請(qǐng)你根據(jù)已有信息,增加一個(gè)適當(dāng)?shù)臈l件,把原題補(bǔ)充完整,所填條件是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的文字,解答問(wèn)題:
大家知道
2
是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用
2
-1
來(lái)表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理,因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
2
的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
又例如:∵
4
7
9
,即2<
7
<3
,
7
的整數(shù)部分為2,小數(shù)部分為(
7
-2)

請(qǐng)解答:(1)如果
5
的小數(shù)部分為a,
13
的整數(shù)部分為b,求a+b-
5
的值;
(2)已知:10+
3
=x+y
,其中x是整數(shù),且0<y<1,求x-y的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的文字,解答問(wèn)題.
大家都知道
2
是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用
2
-1來(lái)表示
2
的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理的,因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
2
的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請(qǐng)解答:a表示
11
的整數(shù)部分,b表示
11
的小數(shù)部分.求2a+b-
11
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的文字,解答問(wèn)題.
大家知道
2
是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此
2
的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),但是由于1<
2
<2,所以
2
的整數(shù)部分為1,將
2
減去其整數(shù)部分1,差就是小數(shù)部分
2
-1,根據(jù)以上的內(nèi)容,解答下面的問(wèn)題:
(1)
5
的整數(shù)部分是
2
2
,小數(shù)部分是
5
-2
5
-2

(2)1+
2
的整數(shù)部分是
2
2
,小數(shù)部分是
2
-1
2
-1
;
(3)若設(shè)2+
3
整數(shù)部分是x,小數(shù)部分是y,求x-
3
y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案