【題目】已知,在中,,上一動(dòng)點(diǎn),以為斜邊作,于點(diǎn),且.

1)如圖①,若平分,求的長(zhǎng)

2)如圖②,連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn),求證.

【答案】(1)12;(2)見(jiàn)解析

【解析】

1)由“SAS”可證AEM≌△FCM,可得EM=MC,由等腰三角形性質(zhì)可求∠AEF=MCE=MEC=30°,由直角三角形的性質(zhì)可求ME=MC=8,即可求AC的長(zhǎng);
2)過(guò)點(diǎn)CCGACAD于點(diǎn)G,由“SAS”可證ACG≌△EFC,可得AG=CECF=CG,由等腰三角形的性質(zhì)可得FG=2FN,即可得結(jié)論.

1)∵EF平分∠AEC
∴∠AEF=FEC,
∵∠BAC=EFC=90°AM=MF,∠AME=FMC
∴△AEM≌△FCMSAS
EM=MC
∴∠MEC=MCE
∴∠MEC=MCE=AEF,
∵∠MEC+MCE+AEF=90°
∴∠AEF=MCE=MEC=30°,且∠BAC=90°
EM=2AM=8
MC=8
AC=AM+MC=12
2)如圖,過(guò)點(diǎn)CCGACAD于點(diǎn)G,

由(1)可知:EM=MC
AM=MF
AC=EF,
∵∠BAC=EFC=90°
∴點(diǎn)A,點(diǎn)F,點(diǎn)C,點(diǎn)E四點(diǎn)共圓
∴∠CAG=FEC,且AC=EF,∠EFC=ACG=90°
∴△ACG≌△EFCASA
AG=CECF=CG,
CF=CGCNAG
FG=2FN
EC=AG=AF+FG=AF+2FN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AD=2ABFAD的中點(diǎn),作CEAB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF=BCD;(2EF=CF;(3SBEC= 2SCEF;(4)∠DFE=3AEF;其中正確的結(jié)論是(

A.1)(2B.1)(2)(4C.2)(3)(4D.1)(3)(4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2=(1+2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=   ,b=   ;

(2)試著把7+4化成一個(gè)完全平方式.

(3)若a是216的立方根,b是16的平方根,試計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)分別在的邊上運(yùn)動(dòng)(不與點(diǎn)重合),的平分線,的延長(zhǎng)線交角的平分線于點(diǎn).

1)若,求的度數(shù).

2)若,求的度數(shù).

3)若,請(qǐng)用含的代數(shù)式表示的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,BD是一條對(duì)角線,點(diǎn)E在直線CD上(與點(diǎn)C,D不重合),連接AE,平移△ADE,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCF,過(guò)點(diǎn)F作FG⊥BD于點(diǎn)G,連接AG,EG.

(1)問(wèn)題猜想:如圖1,若點(diǎn)E在線段CD上,試猜想AG與EG的數(shù)量關(guān)系是____________,位置關(guān)系是____________;

(2)類比探究:如圖2,若點(diǎn)E在線段CD的延長(zhǎng)線上,其余條件不變,小明猜想(1)中的結(jié)論仍然成立,請(qǐng)你給出證明;

(3)解決問(wèn)題:若點(diǎn)E在線段DC的延長(zhǎng)線上,且∠AGF=120°,正方形ABCD的邊長(zhǎng)為2,請(qǐng)?jiān)趥溆脠D中畫(huà)出圖形,并直接寫出DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三個(gè)頂點(diǎn)的坐標(biāo)分別為,,

1)若將△ABC 向右平移三個(gè)單位長(zhǎng)度得到△A1B1C1,則點(diǎn) A1 的坐標(biāo)為________

2)若△ABC 與△A2B2C2 關(guān)于原點(diǎn) O 成中心對(duì)稱,則點(diǎn) A2 的坐標(biāo)________

3)畫(huà)出△ABC 繞原點(diǎn) O 順時(shí)針旋轉(zhuǎn) 90°后的對(duì)應(yīng)圖形△A3B3C3,并寫出 A3 的坐標(biāo)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商城銷售A,B兩種自行車.A型自行車售價(jià)為2 100/輛,B型自行車售價(jià)為1 750/輛,每輛A型自行車的進(jìn)價(jià)比每輛B型自行車的進(jìn)價(jià)多400元,商城用80 000元購(gòu)進(jìn)A型自行車的數(shù)量與用64 000元購(gòu)進(jìn)B型自行車的數(shù)量相等.

(1)求每輛A,B兩種自行車的進(jìn)價(jià)分別是多少?

(2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種自行車共100輛,設(shè)購(gòu)進(jìn)A型自行車m輛,這100輛自行車的銷售總利潤(rùn)為y元,要求購(gòu)進(jìn)B型自行車數(shù)量不超過(guò)A型自行車數(shù)量的2倍,總利潤(rùn)不低于13 000元,求獲利最大的方案以及最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校準(zhǔn)備組織七年級(jí)400名學(xué)生參加北京夏令營(yíng),已知用3輛小客車和1輛大客車每次可運(yùn)送學(xué)生105人;用1輛小客車和2輛大客車每次可運(yùn)送學(xué)生110人;

1)每輛小客車和每輛大客車各能坐多少名學(xué)生?

2)若學(xué)校計(jì)劃租用小客車x輛,大客車y輛,一次送完,且恰好每輛車都坐滿;

請(qǐng)你設(shè)計(jì)出所有的租車方案;

若小客車每輛需租金4000元,大客車每輛需租金7600元,請(qǐng)選出最省錢的租車方案,并求出最少租金.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AEAC,ABAD,EABCAD.

1BCDE相等嗎?說(shuō)明理由.

2)若BCDE相交于點(diǎn)F,EF=CF.連接AF,BAFDAF相等嗎?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案