【題目】若直線y=3x+m經(jīng)過第一、三、四象限,則拋物線y=(x-m) +1的頂點在第象限( )
A.一
B.二
C.三
D.四

【答案】B
【解析】 直線 經(jīng)過第一、三、四象限,
<0,
拋物線 是二次函數(shù),其頂點坐標(biāo)為(m,1),
m<0,
∴ 拋物線的頂點在第二象限.


【考點精析】利用一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)對題目進行判斷即可得到答案,需要熟知一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減。灰淮魏瘮(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,線段AB=8cm,C為線段AB上的一個動點(C不與點A、B重合),DE分別是線段AC和線段BC的中點.

(1)DE的長;

(2)知識遷移:如圖②,已知∠AOB=,射線OC在∠AOB的內(nèi)部,OD、OE分別平分∠AOC和∠BOC,求∠DOE的度數(shù)(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點為DF上的點,BAC上的點,∠1=∠2,∠C=∠D,那么DFAC,請完成它成立的理由

∵∠1=∠2,∠2=∠3 ,∠1=∠4(

∴∠3=∠4(

∴________∥_______ (

∴∠C=∠ABD

∵∠C=∠D

∴∠D=∠ABD

DFAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C,DAB的垂直平分線上兩點,延長AC,DB交于點E,AFBCDE于點F

求證:(1)ABCAF的角平分線;

(2)∠FAD E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC和△A1B1C1關(guān)于x軸成軸對稱,畫出△A1B1C1

(2)點C1的坐標(biāo)為_________,△ABC的面積為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AD=10cm,AB=6cm,點M在邊CD上,由C往D運動,速度為1cm/s,運動時間為t秒,將△ADM沿著AM翻折至△ADM,點D對應(yīng)點為D,AD所在直線與邊BC交于點P.

(1)如圖1,當(dāng)t=0時,求證:PA=PC;

(2)如圖2,當(dāng)t為何值時,點D恰好落在邊BC上;

(3)如圖3,當(dāng)t=3時,求CP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點DDEAB,于點E

1)求證:△ACD≌△AED;

2)若∠B=30°CD=1,求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:拋物線 與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.點P為線段BC上一點,過點P作直線ι⊥x軸于點F,交拋物線 于點E.

(1)求A、B、C三點的坐標(biāo);
(2)當(dāng)點P在線段BC上運動時,求線段PE長的最大值;
(3)當(dāng)PE取最大值時,把拋物線 向右平移得到拋物線 ,拋物線 與線段BE交于點M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線 應(yīng)向右平移幾個單位長度可得到拋物線 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:P、Q分別是兩條線段a和b上任意一點,線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點.

(1)根據(jù)上述定義,當(dāng)m=2,n=2時,如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時,如圖2,線段BC與線段OA的距離為;

(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.

(3)當(dāng)m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M,
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案