【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是.圖1中,點(diǎn)為正方形的對稱中心,頂點(diǎn)分別在軸和軸的正半軸上,則___ 圖2中,點(diǎn)為正的重心,頂點(diǎn)分別在軸和軸的正半軸上,則___________.
【答案】
【解析】
作AM⊥x軸于點(diǎn)M,證明△ADM≌△DCO,得出C點(diǎn)坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)求出點(diǎn)P坐標(biāo),運(yùn)用勾股定理求出OP的長;通過證明△BHD∽△AGD,△DPQ∽△DBH,△DPQ∽△DAG,求出相應(yīng)線段的長度,得到點(diǎn)P的坐標(biāo),運(yùn)用勾股定理即可得到OP的長.
如圖,作AM⊥x軸于點(diǎn)M,
∵四邊形ABCD是正方形,
∴∠ADC=90°
∵
又CD=AD
∴△ADM≌△DCO
∴CO=DM,OD=AM,
∵A(4,3)
∴AM=3,OM=4,
∴DM=OM-OD=OM-AM=4-3=1,
∴OC=DM,
即C(0,1)
∵點(diǎn)為正方形的對稱中心,
∴P(,),即P(2,2)
∴;
(2)過B點(diǎn)作BD⊥AC于點(diǎn)D,
∵△ABC是正三角形,P為重心,
∴P在AD上,
過A點(diǎn)作AE⊥x軸于點(diǎn)E,
過D作DH//x軸,交AE、y軸分別為G、H,
過P作PQ⊥HG于點(diǎn)Q,
∵D為AC的中點(diǎn),DG//x軸,
∴DG=CE,AG=AE=,
又∵∠BDA=90°,
∴∠BDH+∠ADG=90°,
∵∠DAG+∠ADG=90°,
∴∠BDH=∠DAG,
又∠BHD=∠AGD=90°
∴△BHD∽△AGD
∴
∵
∴
∴,
連接AP,則∠PAD=30°,
∴
∵PQ⊥HG,BH⊥HG,
∴PG//BH
∴△DPQ∽△DBH
∴△DPQ∽△DAG,
∴,
∴,
∴點(diǎn)P的縱坐標(biāo)為:PQ+GE=,橫坐標(biāo)為:
∴P(,),
∴.
故答案為:;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)H為邊BC的中點(diǎn),點(diǎn)G為線段DH上一點(diǎn),且∠BGC=90°,延長BG交CD于點(diǎn)E,延長CG交AD于點(diǎn)F,當(dāng)CD=4,DE=1時,則DF的長為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上.設(shè)拋物線與x軸的另一個交點(diǎn)為點(diǎn)C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動點(diǎn)(不與點(diǎn)A、B重合),
①如圖2,若點(diǎn)P在直線AB上方,連接OP交AB于點(diǎn)D,求的最大值;
②如圖3,若點(diǎn)P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)E或F恰好落在y軸上,直接寫出對應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是菱形,,點(diǎn)從點(diǎn)出發(fā),沿運(yùn)動,過點(diǎn)作直線的垂線,垂足為,設(shè)點(diǎn)運(yùn)動的路程為,的面積為,則下列圖象能正確反映與之間的函數(shù)關(guān)系的是( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅旗連鎖超市準(zhǔn)備購進(jìn)甲、乙兩種綠色袋裝食品.甲、乙兩種綠色袋裝食品的進(jìn)價(jià)和售價(jià)如表.已知:用2000元購進(jìn)甲種袋裝食品的數(shù)量與用1600元購進(jìn)乙種袋裝食品的數(shù)量相同.
甲 | 乙 | |
進(jìn)價(jià)(元/袋) | ||
售價(jià)(元/袋) | 20 | 13 |
(1)求的值;
(2)要使購進(jìn)的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價(jià)-進(jìn)價(jià))不少于4800元,且不超過4900元,問該超市有幾種進(jìn)貨方案?
(3)在(2)的條件下,該超市如果對甲種袋裝食品每袋優(yōu)惠元出售,乙種袋裝食品價(jià)格不變.那么該超市要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB//CD,直線EF交AB于點(diǎn)E,交CD于點(diǎn)F,EP平分∠AEF,FP平分∠CFE,∠BEP=α,∠DFP=β,則a+β=( )
A.180°B.225°C.270°D.315°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商購進(jìn)某種商品,當(dāng)購進(jìn)量在20千克~50千克之間(含20千克和50千克)時,每千克進(jìn)價(jià)是5元;當(dāng)購進(jìn)量超過50千克時,每千克進(jìn)價(jià)是4元.此種商品的日銷售量y(千克)受銷售價(jià)x(元/千克)的影響較大,該經(jīng)銷商試銷一周后獲得如下數(shù)據(jù):
x(元/千克) | 5 | 5.5 | 6 | 6.5 | 7 |
y(千克) | 90 | 75 | 60 | 45 | 30 |
解答下列問題:
(1)求出y關(guān)于x的一次函數(shù)表達(dá)式:
(2)若每天購進(jìn)的商品能夠全部銷售完,且當(dāng)日銷售價(jià)不變,日銷售利潤為w元,那么銷售價(jià)定為多少時,該經(jīng)銷商銷售此種商品的當(dāng)日利潤最大?最大利潤為多少元?此時購進(jìn)量應(yīng)為多少千克?(注:當(dāng)日利潤=(銷售價(jià)-進(jìn)貨價(jià))×日銷售量).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,給出下列四個結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點(diǎn),EG⊥AF,FH⊥CE,垂足分別為G,H,設(shè)AG=x,圖中陰影部分面積為y,則y與x之間的函數(shù)關(guān)系式是( )
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com