【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y軸交于點(diǎn),與x軸交于點(diǎn),點(diǎn)B坐標(biāo)為

求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);

過(guò)點(diǎn)AAC平行于x軸,交拋物線(xiàn)于點(diǎn)C,點(diǎn)P為拋物線(xiàn)上的一點(diǎn)點(diǎn)PAC上方,作PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

【答案】(1) (2)

【解析】試題分析:(1)用待定系數(shù)法求拋物線(xiàn)解析式,并利用配方法求頂點(diǎn)坐標(biāo);
(2)先求出直線(xiàn)AB解析式,設(shè)出點(diǎn)P坐標(biāo)(x,-x2+4x+5),建立函數(shù)關(guān)系式S四邊形APCD=-2x2+10x,根據(jù)二次函數(shù)求出極值;可得P的坐標(biāo).

試題解析:

把點(diǎn),點(diǎn)B坐標(biāo)為代入拋物線(xiàn)中,

得: ,解得:

拋物線(xiàn)的解析式為: ,

頂點(diǎn)坐標(biāo)為;

設(shè)直線(xiàn)AB的解析式為: ,

,

解得: ,

直線(xiàn)AB的解析式為:

設(shè),則,

,

點(diǎn)C在拋物線(xiàn)上,且縱坐標(biāo)為5

,

,

,

有最大值,

當(dāng)時(shí),S有最大值為

此時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A、B在數(shù)軸上分別表示數(shù)ab.若AB兩點(diǎn)間的距離記為d,則dab之間的數(shù)量關(guān)系是d=|a-b|.

(1)數(shù)軸上有理數(shù)x與有理數(shù)-2所對(duì)應(yīng)兩點(diǎn)之間的距離可以表示為______

(2)|x+6|可以表示數(shù)軸上有理數(shù)x與有理數(shù)_______所對(duì)應(yīng)的兩點(diǎn)之間的距離;

|x+6|= |x -2|,則x=______;

(3)a=1,b=-2,將數(shù)軸折疊,使得A點(diǎn)與﹣7表示的點(diǎn)重合,則B點(diǎn)與數(shù)______表示的點(diǎn)P重合;

(4)若數(shù)軸上M、N兩點(diǎn)之間的距離為11(MN的左側(cè)),且M、N兩點(diǎn)經(jīng)過(guò)(3)中折疊后互相重合,則MN兩點(diǎn)表示的數(shù)分別是:M_____, N_______;

(5)在題(3)的條件下,點(diǎn)A為定點(diǎn),點(diǎn)BP為動(dòng)點(diǎn),若移動(dòng)點(diǎn)B、P點(diǎn)后,能否使相鄰兩點(diǎn)間距離相等?若能,請(qǐng)寫(xiě)出移動(dòng)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料并解決有關(guān)問(wèn)題:

我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱(chēng)﹣1,2分別為|x+1|與|x﹣2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①x<﹣1;②﹣1≤x<2;③x≥2.

從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|可分以下3種情況:

當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;

當(dāng)﹣1≤x<2時(shí),原式=x+1﹣(x﹣2)=3;

當(dāng)x≥2時(shí),原式=x+1+x﹣2=2x﹣1.綜上討論,原式=

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:

(1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|.

(2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,RtABC的直角邊AC在x軸上,ACB=90°,AC=1,反比例函數(shù)(k0)的圖象經(jīng)過(guò)BC邊的中點(diǎn)D(3,1)

(1)求這個(gè)反比例函數(shù)的表達(dá)式;

(2)若ABC與EFG成中心對(duì)稱(chēng),且EFG的邊FG在y軸的正半軸上,點(diǎn)E在這個(gè)函數(shù)的圖象上.

求OF的長(zhǎng);

連接AF,BE,證明四邊形ABEF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對(duì)角線(xiàn)BOx 軸上,若正方形ABCO的邊長(zhǎng)為,點(diǎn)Bx負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過(guò)C點(diǎn).

1)求該反比例函數(shù)的解析式;

2)當(dāng)函數(shù)值-2時(shí),請(qǐng)直接寫(xiě)出自變量x的取值范圍;

3)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把順次連接四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形.若一個(gè)任意四邊形的面積為a,則它的中點(diǎn)四邊形面積為(

A.aB. C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某區(qū)初中生一周課外閱讀時(shí)長(zhǎng)的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長(zhǎng)分為四類(lèi):2小時(shí)以?xún)?nèi),24小時(shí)(含2小時(shí)),46小時(shí)(含4小時(shí)),6小時(shí)及以上,并繪制了如圖所示不完整的統(tǒng)計(jì)圖.

1)本次調(diào)查共隨機(jī)抽取了 名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長(zhǎng)“46小時(shí)”對(duì)應(yīng)的圓心角度數(shù)為

4)若該區(qū)共有10 000名初中生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)不少于4小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)的圖像經(jīng)過(guò)第二象限內(nèi)的點(diǎn),軸于點(diǎn),的面積為2.若直線(xiàn)經(jīng)過(guò)點(diǎn),并且經(jīng)過(guò)反比例函數(shù)的圖像上另一點(diǎn).

1)求反比例函數(shù)與直線(xiàn)的解析式;

2)連接,求的面積;

3)不等式的解集為_(kāi)________

4)若圖像上,且滿(mǎn)足,則的取值范圍是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)E,點(diǎn)EBD的中點(diǎn), ,則 ______

查看答案和解析>>

同步練習(xí)冊(cè)答案