【題目】定義符號(hào)min{a,b}的含義為:當(dāng)a≥b時(shí)min{a,b}=b;當(dāng)a<b時(shí)min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.則min{﹣x2+1,﹣x}的最大值是(
A.
B.
C.1
D.0

【答案】A
【解析】解:在同一坐標(biāo)系xOy中,畫出函數(shù)二次函數(shù)y=﹣x2+1與正比例函數(shù)y=﹣x的圖象,如圖所示.設(shè)它們交于點(diǎn)A、B. 令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= ,
∴A( , ),B( , ).
觀察圖象可知:
① 當(dāng)x≤ 時(shí),min{﹣x2+1,﹣x}=﹣x2+1,函數(shù)值隨x的增大而增大,其最大值為 ;
②當(dāng) <x< 時(shí),min{﹣x2+1,﹣x}=﹣x,函數(shù)值隨x的增大而減小,其最大值為
③當(dāng)x≥ 時(shí),min{﹣x2+1,﹣x}=﹣x2+1,函數(shù)值隨x的增大而減小,最大值為
綜上所示,min{﹣x2+1,﹣x}的最大值是
故選:A.

理解min{a,b}的含義就是取二者中的較小值,畫出函數(shù)圖象草圖,利用函數(shù)圖象的性質(zhì)可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生成一種節(jié)能產(chǎn)品,投放市場(chǎng)供不應(yīng)求.若該企業(yè)每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬(wàn)元,每套產(chǎn)品的售價(jià)不低于120萬(wàn)元.已知這種產(chǎn)品的月產(chǎn)量x(套)與每套的售價(jià)y1(萬(wàn)元)之間滿足關(guān)系式y(tǒng)1=190﹣2x.月產(chǎn)量x(套)與生成總成本y2(萬(wàn)元)存在如圖所示的函數(shù)關(guān)系.

(1)直接寫出y2(2)與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的取值范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時(shí),這種產(chǎn)品的利潤(rùn)W(萬(wàn)元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=8,點(diǎn)E是AD上的一點(diǎn),有AE=4,BE的垂直平分線交BC的延長(zhǎng)線于點(diǎn)F,連結(jié)EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖象與邊長(zhǎng)為5的等邊△AOB的邊OA,AB分別相交于C,D兩點(diǎn),若OC=2BD,則實(shí)數(shù)k的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ACDBCE中,AC=BC,AD=BE,CD=CE,ACE=55°,BCD=155°,ADBE相交于點(diǎn)P,則∠BPD的度數(shù)為(

A. 120° B. 125° C. 130° D. 155°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB兩個(gè)端點(diǎn)的坐標(biāo)分別為A(6,6),B(8,2),以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮小為原來(lái)的 后得到線段CD,則點(diǎn)B的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為(
A.(3,3)
B.(1,4)
C.(3,1)
D.(4,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米

其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論: ①△AED≌△DFB;②S四邊形BCDG= CG2;③若AF=2DF,則BG=6GF.
其中正確的結(jié)論(

A.只有①②
B.只有①③
C.只有②③
D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案