【題目】如圖所示,已知A,B兩點(diǎn)的坐標(biāo)分別為(2,0),(0,10),P是△AOB外接圓⊙C上的一點(diǎn),OP交AB于點(diǎn) D.
(1)當(dāng)OP⊥AB時,求OP;
(2)當(dāng)∠AOP=30°時,求AP.
【答案】(1)OP=;(2)AP=2.
【解析】
(1)當(dāng)OP⊥AB時,由垂徑定理可知OD=DP,根據(jù)等面積可求出斜邊上的高OD的長,進(jìn)而可求出PO的長;
(2)連接CP,由圓周角定理可知∠ACP=60°,進(jìn)而可證明△ACP為等邊三角形,則AP=AC,即求出圓的半徑即可.
(1)∵A,B兩點(diǎn)的坐標(biāo)分別為(2,0),(0,10),
∴AO=2,OB=10,
∵AO⊥BO,
∴AB==4,
∵OP⊥AB,
∴=,CD=DP,
∴CD=,
∴OP=2CD=;
(2)連接CP,如圖所示:
∵∠AOP=30°,
∴∠ACP=60°,
∵CP=CA,
∴△ACP為等邊三角形,
∴AP=AC=AB=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了自貢市創(chuàng)建全國文明城市知識競賽活動,初一年級全體同學(xué)參加了知識競賽.
收集教據(jù):現(xiàn)隨機(jī)抽取了初一年級名同學(xué)的“創(chuàng)文知識競賽”成績,分?jǐn)?shù)如下(單位:分):
整理分析數(shù)據(jù):
成績(單位:分) | 頻數(shù)(人數(shù)) |
(1)請將圖表中空缺的部分補(bǔ)充完整;
(2)學(xué)校決定表彰“創(chuàng)文知識競賽”成績在分及其以上的同學(xué).根據(jù)上面統(tǒng)計結(jié)果估計該校初一年級人中,約有多少人將獲得表彰;
(3)“創(chuàng)文知識競賽”中,受到表彰的小紅同學(xué)得到了印有龔扇、剪紙、彩燈、恐龍圖案的四枚紀(jì)念章,她從中選取兩枚送給弟弟,則小紅送給弟弟的兩枚紀(jì)念章中,恰好有恐龍圖案的概率是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時從B點(diǎn)出發(fā),沿射線BC向右勻速移動,已知點(diǎn)F的移動速度是點(diǎn)E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動距離為x(0<x<6).
(1)∠DCB= 度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時,x= ;
(2)在點(diǎn)E,F(xiàn)的移動過程中,點(diǎn)G始終在BD或BD的延長線上運(yùn)動,求點(diǎn)G在線段BD的中點(diǎn)時x的值;
(3)當(dāng)2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時,y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c的圖象與x軸交于A(﹣3,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)E(m,2)是直線AC上方的拋物線上一點(diǎn),連接EA、EB、EC,EB與y軸交于D.
①點(diǎn)F是x軸上一動點(diǎn),連接EF,當(dāng)以A、E、F為頂點(diǎn)的三角形與△BOD相似時,求出線段EF的長;
②點(diǎn)G為y軸左側(cè)拋物線上一點(diǎn),過點(diǎn)G作直線CE的垂線,垂足為H,若∠GCH=∠EBA,請直接寫出點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=4,BC=2,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),連接DE.將△CDE繞點(diǎn)C逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn)
①當(dāng)α=0°時,=_______;
②當(dāng)α=180°時,=______.
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時,的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
△CDE繞點(diǎn)C逆時針旋轉(zhuǎn)至A、B、E三點(diǎn)在同一條直線上時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點(diǎn)P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點(diǎn)C和點(diǎn)D為圓心,大于為半徑作弧,兩弧交于點(diǎn)M,N;②作直線MN,且恰好經(jīng)過點(diǎn)A,與CD交于點(diǎn)E,連接BE,則下列說法錯誤的是( )
A.B.C.若AB=4,則D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了做好開學(xué)準(zhǔn)備,某校共購買了20桶A、B兩種桶裝消毒液,進(jìn)行校園消殺,以備開學(xué).已知A種消毒液300元/桶,每桶可供2 000米2的面積進(jìn)行消殺,B種消毒液200元/桶,每桶可供1 000米2的面積進(jìn)行消殺.
(1)設(shè)購買了A種消毒液x桶,購買消毒液的費(fèi)用為y元,寫出y與x之間的關(guān)系式,并指出自變量x的取值范圍;
(2)在現(xiàn)有資金不超過5 300元的情況下,求可消殺的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O的半徑為r,在射線OM上任取一點(diǎn)P(不與點(diǎn)O重合),如果射線OM上的點(diǎn)P',滿足OP·OP'=r2,則稱點(diǎn)P'為點(diǎn)P關(guān)于⊙O的反演點(diǎn).
在平面直角坐標(biāo)系xOy中,已知⊙O的半徑為2.
(1)已知點(diǎn)A (4,0),求點(diǎn)A關(guān)于⊙O的反演點(diǎn)A'的坐標(biāo);
(2)若點(diǎn)B關(guān)于⊙O的反演點(diǎn)B'恰好為直線與直線x=4的交點(diǎn),求點(diǎn)B的坐標(biāo);
(3)若點(diǎn)C為直線上一動點(diǎn),且點(diǎn)C關(guān)于⊙O的反演點(diǎn)C'在⊙O的內(nèi)部,求點(diǎn)C的橫坐標(biāo)m的范圍;
(4)若點(diǎn)D為直線x=4上一動點(diǎn),直接寫出點(diǎn)D關(guān)于⊙O的反演點(diǎn)D'的橫坐標(biāo)t的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com