【題目】(11分)如圖1,點(diǎn)A(a,b)在平面直角坐標(biāo)系xOy中,點(diǎn)A到坐標(biāo)軸的垂線段AB,AC與坐標(biāo)軸圍成矩形OBAC,當(dāng)這個(gè)矩形的一組鄰邊長(zhǎng)的和與積相等時(shí),點(diǎn)A稱作“垂點(diǎn)”,矩形稱作“垂點(diǎn)矩形”.

(1)在點(diǎn)P(1,2),Q(2,-2),N(,-1)中,是“垂點(diǎn)”的點(diǎn)為 ;

(2)點(diǎn)M(-4,m)是第三象限的“垂點(diǎn)”,直接寫(xiě)出m的值

(3)如果“垂點(diǎn)矩形”的面積是,且“垂點(diǎn)”位于第二象限,寫(xiě)出滿足條件的“垂點(diǎn)”的坐標(biāo) ;

(4)如圖2,平面直角坐標(biāo)系的原點(diǎn)O是正方形DEFG的對(duì)角線的交點(diǎn),當(dāng)正方形DEFG的邊上存在“垂點(diǎn)”時(shí),GE的最小值為8.

【答案】(1)Q;(2);(3)(-4,),(-,4);(4)8

【解析】

1)根據(jù)垂點(diǎn)的意義直接判斷即可得出結(jié)論;

2)根據(jù)垂點(diǎn)的意義建立方程即可得出結(jié)論

3)根據(jù)垂點(diǎn)的意義和矩形的面積建立方程即可得出結(jié)論;

4)先確定出直線EF的解析式利用垂點(diǎn)的意義建立方程,利用非負(fù)性即可確定出m的范圍,即可得出結(jié)論.

1P12),1+2=31×2=2,

23,∴點(diǎn)P不是垂點(diǎn)”,

Q2,﹣2),2+2=4,2×2=4Q垂點(diǎn)”.

N,﹣1),+1=×1=

,∴點(diǎn)N不是垂點(diǎn)”,

故答案為:Q;

2∵點(diǎn) M(﹣4,m)是第三象限的垂點(diǎn)”,4+(﹣m)=4×(﹣m),m=﹣

故答案為:;

3)設(shè)垂點(diǎn)的坐標(biāo)為(ab),a+b=﹣ab

垂點(diǎn)矩形的面積為,ab=

:﹣a+b=﹣ab=,

解得a=﹣4,b=a=﹣,b=4,垂點(diǎn)的坐標(biāo)為(﹣4,)或(﹣4),

故答案為:(﹣4,)或(﹣4),.

4)設(shè)點(diǎn)Em,0)(m0),

∵四邊形EFGH是正方形,F0m),y=﹣x+m.設(shè)邊EF上的垂點(diǎn)的坐標(biāo)為(a,﹣a+m),a+(﹣a+m)=a(﹣a+m

a2am=﹣m,a2=0m24m=mm40,

m0,m40m4,m的最小值為4EG的最小值為2m=8,

故答案為:8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠B、∠D的兩邊分別平行。

(1)在圖①中,∠B與∠D的數(shù)量關(guān)系為相等相等。

(2)在圖②中,∠B與∠D的數(shù)量關(guān)系為互補(bǔ)互補(bǔ)。

(3)用一句話歸納的結(jié)論為如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等或互補(bǔ)如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角相等或互補(bǔ)。

試分別說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過(guò)點(diǎn)C作CFCE交AB的延長(zhǎng)線于點(diǎn)F,EF交BC于點(diǎn)G.

(1)求證:CDE≌△CBF;

(2)當(dāng)DE=時(shí),求CG的長(zhǎng);

(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過(guò)程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長(zhǎng);若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)EAD邊的中點(diǎn),點(diǎn)MAB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:當(dāng)AM的值為 時(shí),四邊形AMDN是矩形;當(dāng)AM的值為 時(shí),四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?

(3)根據(jù)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.

(1)求證:CD為⊙O的切線;

(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P按圖中箭頭所示方向從原點(diǎn)出發(fā),1次運(yùn)動(dòng)到P1(1,1),2次接著運(yùn)動(dòng)到點(diǎn)P2(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)P3(3,-2),,按這的運(yùn)動(dòng)規(guī)律,點(diǎn)P2019的坐標(biāo)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從①;②;③;④.這四個(gè)條件中選取兩個(gè),使四邊形成為平行四邊形.下面不能說(shuō)明是平行四邊形的是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案