【題目】如圖1,P為Rt△ABC所在平面內(nèi)任意一點(diǎn)(不在直線AC上),∠ACB=90°,M為AB邊中點(diǎn).操作:以PA、PC為鄰邊作平行四邊形PADC,連續(xù)PM并延長到點(diǎn)E,使ME=PM,連接DE. 探究:
(1)請猜想與線段DE有關(guān)的三個結(jié)論;
(2)請你利用圖2,圖3選擇不同位置的點(diǎn)P按上述方法操作;
(3)經(jīng)歷(2)之后,如果你認(rèn)為你寫的結(jié)論是正確的,請加以證明; 如果你認(rèn)為你寫的結(jié)論是錯誤的,請用圖2或圖3加以說明;
(注意:錯誤的結(jié)論,只要你用反例給予說明也得分)
(4)若將“Rt△ABC”改為“任意△ABC”,其他條件不變,利用圖4操作,并寫出與線段DE有關(guān)的結(jié)論(直接寫答案).
【答案】
(1)解:DE∥BC,DE=BC,DE⊥AC
(2)解:如圖4,如圖5.
(3)解:方法一:
如圖6,
連接BE,
∵PM=ME,AM=MB,∠PMA=∠EMB,
∴△PMA≌△EMB.
∵PA=BE,∠MPA=∠MEB,
∴PA∥BE.
∵平行四邊形PADC,
∴PA∥DC,PA=DC.
∴BE∥DC,BE=DC,
∴四邊形DEBC是平行四邊形.
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC,
∴DE⊥AC.
方法二:
如圖7,連接BE,PB,AE,
∵PM=ME,AM=MB,
∴四邊形PAEB是平行四邊形.
∴PA∥BE,PA=BE,
余下部分同方法一:
方法三:
如圖8,連接PD,交AC于N,連接MN,
∵平行四邊形PADC,
∴AN=NC,PN=ND.
∵AM=BM,AN=NC,
∴MN∥BC,MN= BC.
又∵PN=ND,PM=ME,
∴MN∥DE,MN= DE.
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC.
∴DE⊥AC.
(4)解:如圖9,DE∥BC,DE=BC.
【解析】連接BE,根據(jù)邊角邊可證△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因為BC⊥AC,所以DE也和AC垂直.以下幾種情況雖然圖象有所變化,但是證明方法一致.
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天早晨,張強(qiáng)從家跑步去體育鍛煉,同時媽媽從體育場晨練結(jié)束回家,途中兩人相遇,張強(qiáng)跑到體育場后發(fā)現(xiàn)要下雨,立即按原路返回,遇到媽媽后兩人一起回到家(張強(qiáng)和媽媽始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與張強(qiáng)出發(fā)的時間x(分)之間的函數(shù)圖象,根據(jù)圖象信息解答下列問題:
(1)求張強(qiáng)返回時的速度;
(2)媽媽比按原速返回提前多少分鐘到家?
(3)請直接寫出張強(qiáng)與媽媽何時相距1000米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算結(jié)果正確的是( )
A.a2+a3=a5
B.a2a3=a6
C.a3÷a2=a
D.(a2)3=a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子有6個完全一樣的球,分別寫著數(shù)字1、2、3、4、5、6,從中摸出一個記下球上的數(shù)字,然后放進(jìn)去,在摸一個球,則兩次摸出球上的數(shù)字之和為5的概率為__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,-3)在( )
A. 第一象限 B. 第二象限
C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)秀美龍江,某學(xué)校組織師生參加一年一度的植樹綠化工作,準(zhǔn)備租用7輛客車,現(xiàn)有甲、乙兩種客車,它們的載客量和租金如下表,設(shè)租用甲種客車x輛,租車總費(fèi)用為y元,
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 60 | 40 |
租金/(元/輛) | 360 | 300 |
(1)求出y(單位:元)與x(單位:輛)之間的函數(shù)關(guān)系式。
(2)若該校共有350名師生前往參加勞動,共有多少種租車方案?
(3)帶隊老師從學(xué)校預(yù)支租車費(fèi)用2400元,試問預(yù)支的租車費(fèi)用是否可有結(jié)余?若有結(jié)余,最多可結(jié)余多少元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m>0)
(1)求證:方程有兩個不相等的實(shí)數(shù)根且其中一根為定值.
(2)設(shè)方程的兩個實(shí)數(shù)根分別為x1 , x2(其中x1<x2).若y是關(guān)于m的函數(shù),且y=7x1﹣mx2 , 求這個函數(shù)的解析式;并求當(dāng)自變量m的取值范圍滿足什么條件時,y≤3m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程ax2+bx+c=0中的a=3,b=0,c=﹣2,則這個一元二次方程是( 。
A.3x2﹣2=0B.3x2+2=0C.3x2+x=0D.3x2﹣x=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】6月5日是世界環(huán)境日,為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某市第一中學(xué)舉行了“環(huán)保知識競賽”,參賽人數(shù)1000人,為了了解本次競賽的成績情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(滿分為100分,得分取整數(shù))進(jìn)行統(tǒng)計,并繪制出不完整的頻率分布表和不完整的頻數(shù)分布直方圖如下:
(1)直接寫出a的值,并補(bǔ)全頻數(shù)分布直方圖.
分組 | 頻數(shù) | 頻率 |
49.5~59.5 | 0.08 | |
59.5~69.5 | 0.12 | |
69.5~79.5 | 20 | |
79.5~89.5 | 32 | |
89.5~100.5 | a |
(2)若成績在80分以上(含80分)為優(yōu)秀,求這次參賽的學(xué)生中成績?yōu)閮?yōu)秀的約為多少人?
(3)若這組被抽查的學(xué)生成績的中位數(shù)是80分,請直接寫出被抽查的學(xué)生中得分為80分的至少有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com